Endogenous viral elements in algal genomes

WANG Liang WU Shuangxiu LIU Tao SUN Jing CHI Shan LIU Cui LI Xingang YIN Jinlong WANG Xumin YU Jun

WANGLiang, WUShuangxiu, LIUTao, SUNJing, CHIShan, LIUCui, LIXingang, YINJinlong, WANGXumin, YUJun. Endogenous viral elements in algal genomes[J]. 海洋学报英文版, 2014, 33(2): 102-107. doi: 10.1007/s13131-014-0446-1
引用本文: WANGLiang, WUShuangxiu, LIUTao, SUNJing, CHIShan, LIUCui, LIXingang, YINJinlong, WANGXumin, YUJun. Endogenous viral elements in algal genomes[J]. 海洋学报英文版, 2014, 33(2): 102-107. doi: 10.1007/s13131-014-0446-1
WANG Liang, WU Shuangxiu, LIU Tao, SUN Jing, CHI Shan, LIU Cui, LI Xingang, YIN Jinlong, WANG Xumin, YU Jun. Endogenous viral elements in algal genomes[J]. Acta Oceanologica Sinica, 2014, 33(2): 102-107. doi: 10.1007/s13131-014-0446-1
Citation: WANG Liang, WU Shuangxiu, LIU Tao, SUN Jing, CHI Shan, LIU Cui, LI Xingang, YIN Jinlong, WANG Xumin, YU Jun. Endogenous viral elements in algal genomes[J]. Acta Oceanologica Sinica, 2014, 33(2): 102-107. doi: 10.1007/s13131-014-0446-1

Endogenous viral elements in algal genomes

doi: 10.1007/s13131-014-0446-1
基金项目: The National Natural Science Foundation of China under contract Nos 31140070, 31271397 and 41206116; the algal transcriptome sequencing was supported by 1KP Project (www.onekp.com).

Endogenous viral elements in algal genomes

  • 摘要: Endogenous viral elements (EVEs) are host-genomic fragments originated from viral genomes. They have been found universally in animal and plant genomes. Here we carried out a systematic screening and analysis of EVEs in algal genomes and found that EVEs commonly exist in algal genomes. We classified the EVE fragments into three categories according to the length of EVE fragments. Due to the probability of sequence similarity by chance, we ignored the potential function of medium-length EVE fragments. However, longlength EVE fragments probably had capability to encode protein domains or even entire proteins, and some short-length EVE fragments had high similarity with host's siRNA sequences and possibly served functions of small RNAs. Therefore, short and long EVE fragments might provide regulomic and proteomic novelty to the host's metabolism and adaptation. We also found several EVE fragments shared by more than 3 algal genomes. By phylogenetic analysis of the shared EVEs and their corresponding species, we found that the integration of viral fragments into host genomes was an ancient event, possibly before the divergence of Chlorophytes and Ochrophytes. Our findings show that there is a frequent genetic flow from viruses to algal genomes. Moreover, study on algal EVEs shed light on the virus-host interaction in large timescale and could also help us understand the balance of marine ecosystems.
  • Alexeyenko A, Tamas I, Liu Gang, et al. 2006. Automatic clustering of orthologs and inparalogs shared by multiple proteomes. Bioinformatics, 22(14): e9-15
    Allen M J, Schroeder D C, Holden M T, et al. 2006. Evolutionary history of the Coccolithoviridae. Mol Biol Evol, 23(1): 86-92
    Altschul S F, Gish W, Miller W, et al. 1990. Basic local alignment search tool. J Mol Biol, 215(3): 403-410
    Boguski M S, Lowe T M, Tolstoshev C M. 1993. dbEST—database for “expressed sequence tags”. Nat Genet, 4(4): 332-333
    Brussaard C P. 2004. Viral control of phytoplankton populations—a review. J Eukaryot Microbiol, 51(2): 125-138
    Cerutti H, Ma Xinrong, Msanne J, et al. 2011. RNA-mediated silencing in Algae: biological roles and tools for analysis of gene function. Eukaryot Cell, 10(9): 1164-1172
    Cock J M, Sterck L, Rouze P, et al. 2010. The Ectocarpus genome and the independent evolution of multicellularity in brown algae. Nature, 465(7298): 617-621
    Darriba D, Taboada G L, Doallo R, et al. 2011. ProtTest 3: fast selection of best-fit models of protein evolution. Bioinformatics, 27(8): 1164-1165
    Dean W E, Gorham E. 1998. Magnitude and significance of carbon burial in lakes, reservoirs, and peatlands. Geology, 26(6): 535-538
    Delaroque N, Boland W. 2008. The genome of the brown alga Ectocarpus siliculosus contains a series of viral DNA pieces, suggesting an ancient association with large dsDNA viruses. BMC Evol Biol, 8: 110
    Delaroque N, Muller D G, Bothe G, et al. 2001. The complete DNA sequence of the Ectocarpus siliculosus Virus EsV-1 genome. Virology, 287(1): 112-132
    Do C B, Mahabhashyam M S, Brudno M, et al. 2005. ProbCons: Probabilistic consistency-based multiple sequence alignment. Genome Res, 15(2): 330-340
    Dunigan D D, Fitzgerald L A, Van Etten J L. 2006. Phycodnaviruses: a peek at genetic diversity. Virus Res, 117(1): 119-132
    Emerman M, Malik H S. 2010. Paleovirology—modern consequences of ancient viruses. PLoS Biol, 8(2): e1000301
    Essoussi N, Boujenfa K, Limam M. 2008. A comparison of MSA tools. Bioinformation, 2(10): 452-455
    Fitzgerald L A, Graves M V, Li Xiao, et al. 2007. Sequence and annotation of the 369-kb NY-2A and the 345-kb AR158 viruses that infect Chlorella NC64A. Virology, 358(2): 472-484
    Fuhrman J A. 1999. Marine viruses and their biogeochemical and ecological effects. Nature, 399(6736): 541-548
    Gifford R, Tristem M. 2003. The evolution, distribution and diversity of endogenous retroviruses. Virus Genes, 26(3): 291-315
    Goodstein D M, Shu Shengqiang, Howson R, et al. 2012. Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res, 40(Database issue): D1178-1186
    Guindon S, Gascuel O. 2003. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol, 52(5): 696-704
    International Committee on Taxonomy of Viruses, King A M Q, Societies I U o M. 2012. Virus Taxonomy: Classification and Nomenclature of Viruses: Ninth Report of the International Committee on Taxonomy of Viruses. Amsterdam: Elsevier/Academic Press, 1327
    Katzourakis A, Gifford R J. 2010. Endogenous viral elements in animal genomes. PLoS Genet, 6(11): e1001191
    Kent W J. 2002. BLAT—the BLAST-like alignment tool. Genome Res, 12(4): 656-664
    Langmead B, Trapnell C, Pop M, et al. 2009. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol, 10(3): R25
    Lavrukhin O V, Fortune J M, Wood T G, et al. 2000. Topoisomerase II from Chlorella virus PBCV-1. Characterization of the smallest known type II topoisomerase. J Biol Chem, 275(10): 6915-6921
    Meints R H, Ivey R G, Lee A M, et al. 2008. Identification of two virus integration sites in the brown alga Feldmannia chromosome. J Virol, 82(3): 1407-1413
    Mette M F, Kanno T, Aufsatz W, et al. 2002. Endogenous viral sequences and their potential contribution to heritable virus resistance in plants. EMBO J, 21(3): 461-469
    Monier A, Pagarete A, de Vargas C, et al. 2009. Horizontal gene transfer of an entire metabolic pathway between a eukaryotic alga and its DNA virus. Genome Res, 19(8): 1441-1449
    Muller D G, Sengco M, Wolf S, et al. 1996. Comparison of two DNA viruses infecting the marine brown algae Ectocarpus siliculosus and E. fasciculatus. J Gen Virol, 77(Pt 9): 2329-2333
    O'Brien K P, Remm M, Sonnhammer E L. 2005. Inparanoid: a comprehensive database of eukaryotic orthologs. Nucleic Acids Res, 33(Database issue): D476-480
    Punta M, Coggill P C, Eberhardt R Y, et al. 2012. The Pfam protein families database. Nucleic Acids Res, 40(Database issue): D290-301
    Raoult D, Audic S, Robert C, et al. 2004. The 1.2-megabase genome sequence of Mimivirus. Science, 306(5700): 1344-1350
    Ribet D, Harper F, Dupressoir A, et al. 2008. An infectious progenitor for the murine IAP retrotransposon: emergence of an intracellular genetic parasite from an ancient retrovirus. Genome Res, 18(4): 597-609
    Staginnus C, Richert-Poggeler K R. 2006. Endogenous pararetroviruses: two-faced travelers in the plant genome. Trends Plant Sci, 11(10): 485-491
    Stamatakis A. 2006. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics, 22(21): 2688-2690
    Van Etten J L, Graves M V, Muller D G, et al. 2002. Phycodnaviridae—large DNA algal viruses. Arch Virol, 147(8): 1479-1516
    Wilson W H, Schroeder D C, Allen M J, et al. 2005. Complete genome sequence and lytic phase transcription profile of a Coccolithovirus. Science, 309(5737): 1090-1092
    Wommack K E, Colwell R R. 2000. Virioplankton: viruses in aquatic ecosystems. Microbiol Mol Biol Rev, 64(1): 69-114
    Yanai-Balser G M, Duncan G A, Eudy J D, et al. 2010. Microarray analysis of Paramecium bursaria chlorella virus 1 transcription. J Virol, 84(1): 532-542
    Zdobnov E M, Apweiler R. 2001. InterProScan—an integration platform for the signature-recognition methods in InterPro. Bioinformatics, 17(9): 847-848
  • 加载中
计量
  • 文章访问数:  1244
  • HTML全文浏览量:  32
  • PDF下载量:  1174
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-03-25
  • 修回日期:  2013-08-01

目录

    /

    返回文章
    返回