TEM investigations of South Atlantic Ridge 13.2°S hydrothermal area

TAO Chunhui XIONG Wei XI Zhenzhu DENG Xianming XU Yixian

TAOChunhui, XIONGWei, XIZhenzhu, DENGXianming, XUYixian. TEM investigations of South Atlantic Ridge 13.2°S hydrothermal area[J]. 海洋学报英文版, 2013, 32(12): 68-74. doi: 10.1007/s13131-013-0392-3
引用本文: TAOChunhui, XIONGWei, XIZhenzhu, DENGXianming, XUYixian. TEM investigations of South Atlantic Ridge 13.2°S hydrothermal area[J]. 海洋学报英文版, 2013, 32(12): 68-74. doi: 10.1007/s13131-013-0392-3
TAO Chunhui, XIONG Wei, XI Zhenzhu, DENG Xianming, XU Yixian. TEM investigations of South Atlantic Ridge 13.2°S hydrothermal area[J]. Acta Oceanologica Sinica, 2013, 32(12): 68-74. doi: 10.1007/s13131-013-0392-3
Citation: TAO Chunhui, XIONG Wei, XI Zhenzhu, DENG Xianming, XU Yixian. TEM investigations of South Atlantic Ridge 13.2°S hydrothermal area[J]. Acta Oceanologica Sinica, 2013, 32(12): 68-74. doi: 10.1007/s13131-013-0392-3

TEM investigations of South Atlantic Ridge 13.2°S hydrothermal area

doi: 10.1007/s13131-013-0392-3
基金项目: The National Natural Science Foundation of China under contract Nos 41176053, 41076029, 91028002 and 41176046; Dayang 115 under contract No. DYXM-115-02-3-01.

TEM investigations of South Atlantic Ridge 13.2°S hydrothermal area

  • 摘要: According to the exploration contract about polymetallic sulfides in the SWIR (Southwest Indian Ridge) signed by China with the International Seabed Authority, to delineate sulfide minerals and estimate resource quantity are urgent tasks. We independently developed our first coincident loop Transient Electromagnetic Method (TEM) device in 2010, and gained the TEM data for seafloor sulfide at South Atlantic Ridge 13.2 ° S in June 2011. In contrast with the widely applied CSEM (Marine controlled-source electromagnetic) method, whose goal is to explore hydrocarbons (oil/gas) of higher resistivity than seawater from 102 to 103 m below the sea floor, the TEM is for low resistivity minerals, and the target depth is from 0 to 100 m below the sea floor. Based on the development of complex sulfide geoelectrial models, this paper analyzed the TEM data obtained, proposing a new method for seafloor sulfide detection. We present the preliminary trial results, in the form of apparent resistivity sections for both half-space and full-space conditions. The results correspond well with the observations of the actual hydrothermal vent area, and the detection depth reached 50-100m below the bed, which verified the capability of the equipment.
  • Alt J C, Shanks W C, Bach W, et al. 2007. Hydrothermal alteration and microbial sulfate reduction in peridotite and gabbro exposed by etachment faulting at the Mid-Atlantic Ridge, 15°20'N (ODP Leg 209): A sulfur and oxygen isotope study. GeochemGeophysGeosyst, 8: Q08002, doi: 10.1029/2007GC001617
    Bach W, Garrido C J, Paulick J, et al. 2004. Seawater-peridotite interactions: First insights from ODP Leg 209, MAR 15. GeochemGeophysGeosyst, 5(9): 1-22
    Beltenev V Y, Beltenev A V. 2003. New discoveries at 12°58'N, 44°52'W, MAR: Professor Logatchev-22 cruise, initial results. InterRidge News, 12(1): 13-14
    Chave A D, Constable S C, Edwards R N. 1991.Electrical exploration methods for the seafloor. In: Nabighian M, ed. Electromagnetic Methods in Applied Geophysics. v 2. Tulsa: SocExplorGeophys, 931-966
    Tao Chunhui, Lin Jian, GuoShiqin, et al. 2007. The Chinese DY115-19 Cruise: Discovery of the First Active Hydrothermal Vent Field at the Ultraslow Spreading Southwest Indian Ridge. InterRidge News, 16: 25-26
    Constable S, Srnka L J. 2007. An introduction to marine controlled-source electromagnetic methods for hydrocarbon exploration. Geophysics, 72: 3-12
    Evans R L, Evertt M E. 1994. Discrimination of hydrothermal mound structures using transient electromagnetic methods. Geophysical Research Letters, 21(6): 501-504
    Galley A G, Hannington M D, Jonasson I R. 2007.Volcanogenic massive sulfide deposits. In: Goodfellow W D, ed. Mineral Deposits of Canada: A Synthesis of Major Deposit-Types, District Metallogeny, the Evolution of Geological Provinces, and Exploration Methods. St John's: Geological Association of Canada, Mineral Deposits Division, Special Publication, 5: 141-161
    Gebruk A V, Moskalev L I, Chevaldonné P, et al. 1997. Hydrothermal vent fauna of the Logatchev area (14°45'N, MAR): preliminary results from first ‘Mir’ and ‘Nautile’ dives in 1995. InterRidge News, 6(2): 10-14
    German C R, Klinkhammer G P, Rudnicki M D. 1996. The Rainbow Hydrothermal Plume, 36°15'N, MAR. Geophysical Research Letters, 23(21): 2979-2982
    Gramberg I S, Kaminsky V D, Kunin A E, et al. 1992. New data on hydrothermal activity and sulphides mineralization at 12°40'-12°50'N obtained by deep-towed system "Rift". DokladiAkademiiNauk, 323: 865-867
    Herzig P M. 1999. Economic potential of sea-floor massive sulfide deposits: ancient and modern. Phil Trans R SocLond A, 357: 861-875
    Kong F N, Ellingsrud S, Eidesmo T, et al. 2002. Seabed logging: A possible direct hydrocarbon indicator for deepsea prospects using EM energy. Oil Gas J, 100: 30-38
    Kuhn T, Alexander B, Augustin N, et al. 2004. Mineralogical, geochemical, and biological investigations of hydrothermal systems on the Mid-Atlantic Ridge between 14°45'N and 15°05'N (HYDROMAR I). Meteor Berichte, InterRidge News, 13:1-4
    Lackschewitz K S. 2005. Longterm study of Hydrothermalism and biology at the Logatchev field, Mid-Atlantic Ridge at 14°45' (revisit 2005) (HYDROMAR II). In Mid-Atlantic Expedition 2005, Cruise No. 64, 1 April 2005-7 June 2005
    Nautilus Minerals. 2009. Electromagnetic survey results outline continuity and extensions at Solwara. News Release. http://www.nautilusminerals.com/s/Media-NewsReleases.asp?reportid=272841 [2009-08-07/2009-11-19]
    Palshin N A. 1996. Oceanic electromagnetic studies: a review. Survey in Geophysics, 17(4): 455-491
    Paulick H, Bach W, Godard M, et al. 2006. Geochemistry of abyssal peridotites (Mid-Atlantic Ridge, 15°20'N, ODP Leg 209): implications for fluid/rock interaction in slow spreading environments. ChemGeol, 234: 179-210
    Piskarev A L, Vishnyakov A E, Kaminsky V D, et al. 1987. Deep sea sediments mapping using geophysical methods. Express Information, Marine Geology and Geophysics, VIEMS, 3: 7
    Robinson P T, Von Herzen R P. 1989. Proceedings of the Ocean Drilling Program: Initial Reports, 118: 89-222
    Swidinsky A, Holz S, Jegen M, 2012. On mapping seafloor mineral deposits with central loop transient electromagnetics. Geophysics, 77(3): 171-184
    Goto T, Takekawa J, Mikada Hi, et al. 2011.Marine electromagnetic sounding on submarine massive sulphides using remotely operated vehicle (ROV) and autonomous underwater vehicle (AUV).Proceedings of the 10th SEGJ International Symposium. Kyoto, Japan, 20-22 November 2011. 1-5, doi: 10.1190/segj102011-001.103
  • 加载中
计量
  • 文章访问数:  1147
  • HTML全文浏览量:  45
  • PDF下载量:  1814
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-05-11
  • 修回日期:  2013-08-16

目录

    /

    返回文章
    返回