Turn off MathJax
Article Contents
Shuo Chen, Renhai Pu, Huiqiong Li, Hongjun Qu, Tianyu Ji, Siyu Su, Yunwen Guan, Hui Zhang. Distribution characteristics of delta reservoirs reshaped by bottom currents: A case study from the second member of the Yinggehai Formation in the DF1-1 Gas Field, Yinggehai Basin, South China Sea[J]. Acta Oceanologica Sinica.
Citation: Shuo Chen, Renhai Pu, Huiqiong Li, Hongjun Qu, Tianyu Ji, Siyu Su, Yunwen Guan, Hui Zhang. Distribution characteristics of delta reservoirs reshaped by bottom currents: A case study from the second member of the Yinggehai Formation in the DF1-1 Gas Field, Yinggehai Basin, South China Sea[J]. Acta Oceanologica Sinica.

Distribution characteristics of delta reservoirs reshaped by bottom currents: A case study from the second member of the Yinggehai Formation in the DF1-1 Gas Field, Yinggehai Basin, South China Sea

Funds:  The National Natural Science Foundation of China’s major project “Research on Geophysical Theories and Methods of Unconventional Oil and Gas Exploration and Development”, Task I: “China’s Tight Oil and Gas Reservoir Geological Characteristics, Classification and Typical Geological Model Establishment” under contract No. 41390451.
More Information
  • The Dongfang1-1 gas field (DF1-1) in the Yinggehai Basin (YGHB) is currently the largest offshore self-developed gas field in China and is rich in oil and gas resources. The second member of the Pliocene Yinggehai Formation (YGHF) is the main gas-producing formation and is composed of various sedimentary types; however, a clear understanding of the sedimentary types and development patterns is lacking. Here, typical lithofacies, logging facies and seismic facies types and characteristics of the YGHF are identified based on high-precision 3D seismic data combined with drilling, logging, analysis and testing data. Based on 3D seismic interpretation and attribute analysis, the origin of high-amplitude reflections is clarified, and the main types and evolution characteristics of sedimentary facies are identified. Taking gas formation IIU as an example, the plane distribution of the delta front and bottom current channel is determined; finally, a comprehensive sedimentary model of the YGHF second member is established. This second member is a shallowly buried “bright spot” gas reservoir with weak compaction. The velocity of sandstone is slightly lower than that of mudstone, and the reflection has medium amplitude when there is no gas. The velocity of sandstone decreases considerably after gas accumulation, resulting in an increase in the wave impedance difference and high-amplitude (bright spot) reflection between sandstone and mudstone; the range of high amplitudes is consistent with that of gas-bearing traps. The distribution of gas reservoirs is obviously controlled by dome-shaped diapir structural traps, and diapir faults are channels through which natural gas from underlying Miocene source rocks can enter traps. The study area is a delta front deposit developed on a shallow sea shelf. The lithologies of the reservoir are mainly composed of very fine sand and coarse silt, and a variety of sedimentary structural types reflect a shallow sea delta environment; upward thickening funnel type, strong toothed bell type and toothed funnel type logging facies are developed. In total, 4 stages of delta front sand bodies (corresponding to progradational reflection seismic facies) derived from the Red and Blue Rivers in Vietnam have developed in the second member of the YGHF; these sand bodies are dated to 1.5 Ma and correspond to four gas formations. During sedimentation, many bottom current channels (corresponding to channel fill seismic facies) formed, which interacted with the superposed progradational reflections. When the provenance supply was strong in the northwest, the area was dominated by a large set of delta front deposits. In the period of relative sea level rise, surface bottom currents parallel to the coastline were dominant, and undercutting erosion was obvious, forming multistage superimposed erosion troughs. Three large bottom current channels that developed in the late sedimentary period of gas formation IIU are the most typical.
  • loading
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (58) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return