Volume 39 Issue 11
Dec.  2020
Turn off MathJax
Article Contents
Liang Chen, Xuejun Xiong, Quanan Zheng, Yeli Yuan, Long Yu, Yanliang Guo, Guangbing Yang, Xia Ju, Jia Sun, Zhenli Hui. Mooring observed mode-2 internal solitary waves in the northern South China Sea[J]. Acta Oceanologica Sinica, 2020, 39(11): 44-51. doi: 10.1007/s13131-020-1667-0
Citation: Liang Chen, Xuejun Xiong, Quanan Zheng, Yeli Yuan, Long Yu, Yanliang Guo, Guangbing Yang, Xia Ju, Jia Sun, Zhenli Hui. Mooring observed mode-2 internal solitary waves in the northern South China Sea[J]. Acta Oceanologica Sinica, 2020, 39(11): 44-51. doi: 10.1007/s13131-020-1667-0

Mooring observed mode-2 internal solitary waves in the northern South China Sea

doi: 10.1007/s13131-020-1667-0
Funds:  The National Science and Technology Major Project under contract No. 2016ZX05057015; the National Natural Science Foundation of China (NSFC) under contract Nos 41376038, 40406009, 41806123 and 41506038; the NSFC-Shandong Joint Fund for Marine Science Research Centers under contract No. U1606405; the National Program on Global Change and Air-Sea Interaction under contract Nos GASI-03-01-01-02, GASI-02-IND-STSsum and GASI-IPOVAI-01-05; the Public Science and Technology Research Funds Projects of Ocean under contract No. 200905024; the National Key Scientific Instrument and Equipment Development Projects under contract No. 2012YQ12003908.
More Information
  • The mode-2 internal solitary waves (ISWs) generated by mode-2 internal tide (IT) are identified by mooring observations in the northern South China Sea (SCS) from 2016 to 2017. Two mode-2 ISWs with a re-appearance period of 24.9 h observed on 29 and 30 July 2016 are characterized by type-b ISWs. They occurred when the isotherms compressed obviously in the vertical direction. Modal decomposition of IT horizontal currents shows that the vertical compression of the isotherms is mainly caused by diurnal mode-2 IT. The analysis of the role of the density stratification reveals that a deeper and thinner pycnocline is favorable for generation of mode-2 ISWs rather than pycnocline intensity. By comparing the mode-2 nonlinear, dispersion coefficients and the Ursell numbers calculated based on the stratification associated with different kinds of ITs with the observation results, it is shown that the diurnal mode-2 IT plays a crucial role in the generation of the mode-2 ISWs. When the diurnal mode-2 IT interacts with the semidiurnal IT and causes a deeper and thinner pycnocline, the mode-2 ISWs are easily excited.
  • loading
  • [1]
    Apel J R, Holbrook J R, Liu A K, et al. 1985. The Sulu Sea internal soliton experiment. Journal of Physical Oceanography, 15(12): 1625–1651. doi: 10.1175/1520-0485(1985)015<1625:TSSISE>2.0.CO;2
    [2]
    Buijsman M C, Kanarska Y, McWilliams J C. 2010. On the generation and evolution of nonlinear internal waves in the South China Sea. Journal of Geophysical Research, 115(C2): C02012. doi: 10.1029/2009JC005275
    [3]
    Chen Zhiwu, Xie Jieshuo, Wang Dongxiao, et al. 2014. Density stratification influences on generation of different modes internal solitary waves. Journal of Geophysical Research: Oceans, 119(10): 7029–7046. doi: 10.1002/2014JC010069
    [4]
    Chen Liang, Zheng Quanan, Xiong Xuejun, et al. 2018. A new type of internal solitary waves with a re-appearance period of 23 h observed in the South China Sea. Acta Oceanologica Sinica, 37(9): 116–118. doi: 10.1007/s13131-018-1252-y
    [5]
    Chen Liang, Zheng Quanan, Xiong Xuejun, et al. 2019. Dynamic and statistical features of internal solitary waves on the continental slope in the northern South China Sea derived from mooring observations. Journal of Geophysical Research: Oceans, 124(6): 4078–4097. doi: 10.1029/2018JC014843
    [6]
    Dong Di, Yang Xiaofeng, Li Xiaofeng, et al. 2016. SAR observation of eddy-Induced mode-2 internal solitary waves in the South China Sea. IEEE Transactions on Geoscience and Remote Sensing, 54(11): 6674–6686. doi: 10.1109/TGRS.2016.2587752
    [7]
    Duda T F, Lynch J F, Irish J D, et al. 2004. Internal tide and nonlinear internal wave behavior at the continental slope in the northern South China Sea. IEEE Journal of Oceanic Engineering, 29(4): 1105–1130. doi: 10.1109/JOE.2004.836998
    [8]
    Grisouard N, Staquet C, Gerkema T. 2011. Generation of internal solitary waves in a pycnocline by an internal wave beam: A numerical study. Journal of Fluid Mechanics, 676: 491–513. doi: 10.1017/jfm.2011.61
    [9]
    Guo C, Chen X. 2012. Numerical investigation of large amplitude second mode internal solitary waves over a slope-shelf topography. Ocean Modelling, 42: 80–91. doi: 10.1016/j.ocemod.2011.11.003
    [10]
    Helfrich K R, Grimshaw R H J. 2008. Nonlinear disintegration of the internal tide. Journal of Physical Oceanography, 38(3): 686–701. doi: 10.1175/2007JPO3826.1
    [11]
    Helfrich K R, Melville W K. 1986. On long nonlinear internal waves over slope-shelf topography. Journal of Fluid Mechanics, 167: 285–308. doi: 10.1017/S0022112086002823
    [12]
    Jackson C. 2007. Internal wave detection using the Moderate Resolution Imaging Spectroradiometer (MODIS). Journal of Geophysical Research, 112(C11): C11012. doi: 10.1029/2007JC004220
    [13]
    Lamb K G, Warn-Varnas A. 2015. Two-dimensional numerical simulations of shoaling internal solitary waves at the ASIAEX site in the South China Sea. Nonlinear Processes Geophysics, 22: 289–312. doi: 10.5194/npg-22-289-2015
    [14]
    Li Q, Farmer D M. 2011. The generation and evolution of nonlinear internal waves in the deep basin of the South China Sea. Journal of Physical Oceanography, 41(7): 1345–1363. doi: 10.1175/2011JPO4587.1
    [15]
    Liang Jianjun, Li Xiaoming. 2019. Generation of second-mode internal solitary waves during winter in the northern South China Sea. Ocean Dynamics, 69(3): 313–321. doi: 10.1007/s10236-019-01246-6
    [16]
    Liu A K, Su Fengchun, Hsu Mingkuang, et al. 2013. Generation and evolution of mode-two internal waves in the South China Sea. Continental Shelf Research, 59: 18–27. doi: 10.1016/j.csr.2013.02.009
    [17]
    Osborne A R, Burch T L. 1980. Internal solitons in the Andaman Sea. Science, 208(4443): 451–460. doi: 10.1126/science.208.4443.451
    [18]
    Pelinovsky E, Polukhina O, Slunyaev A, et al. 2007. Internal solitary waves. In: Grimshaw R H J, ed. Solitary Waves in Fluids. Southampton, Boston: WIT Press, 85–110
    [19]
    Qian Hongbao, Huang Xiaodong, Tian Jiwei. 2016. Observational study of one prototypical mode-2 internal solitary waves in the northern South China Sea. Haiyang Xuebao (in Chinese), 38(9): 13–20
    [20]
    Ramp S R, Tang T Y, Duda T F, et al. 2004. Internal solitons in the northeastern South China Sea. Part I: Sources and deep water propagation. IEEE Journal of Oceanic Engineering, 29(4): 1157–1181. doi: 10.1109/JOE.2004.840839
    [21]
    Ramp S R, Yang Y J, Reeder D B, et al. 2012. Observations of a mode-2 nonlinear internal wave on the northern Heng-Chun Ridge south of Taiwan. Journal of Geophysical Research, 117(C3): C03043. doi: 10.1029/2011JC007662
    [22]
    Ramp S R, Yang Y J, Reeder D B, et al. 2015. The evolution of mode-2 nonlinear internal waves over the northern Heng-Chun Ridge south of Taiwan. Nonlinear Processes Geophysics, 22: 413–431. doi: 10.5194/npg-22-413-2015
    [23]
    Stanton T P, Ostrovsky L A. 1998. Observations of highly nonlinear internal solitons over the continental shelf. Geophysical Research Letters, 25(14): 2695–2698. doi: 10.1029/98GL01772
    [24]
    Vlasenko V I, Hutter K. 2001. Generation of second mode solitary waves by the interaction of a first mode soliton with a sill. Nonlinear Processes in Geophysics, 8(4): 223–239
    [25]
    Wang Gang. 2006. Numerical modelling on the generation process of the tidal internal waves over the northwestern South China Sea shelf (in Chinese) [dissertation]. Qingdao: Institute of Oceanology, Chinese Academy of Sciences
    [26]
    Wang Juan, Huang Weigen, Yang Jingsong, et al. 2013. Study of the propagation direction of the internal waves in the South China Sea using satellite images. Acta Oceanologica Sinica, 32(5): 42–50. doi: 10.1007/s13131-013-0312-6
    [27]
    Xu Zhenhua, Yin Baoshu, Hou Yijun, et al. 2010. A study of internal solitary waves observed on the continental shelf in the northwestern South China Sea. Acta Oceanologica Sinica, 29(3): 18–25. doi: 10.1007/s13131-010-0033-z
    [28]
    Xu Zhenhua, Yin Baoshu, Hou Yijun, et al. 2013. Variability of internal tides and near-inertial waves on the continental slope of the northwestern South China Sea. Journal of Geophysical Research: Oceans, 118(1): 197–211. doi: 10.1029/2012JC008212
    [29]
    Xu Zhenhua, Yin Baoshu, Hou Yijun, et al. 2014. Seasonal variability and north–south asymmetry of internal tides in the deep basin west of the Luzon Strait. Journal of Marine Systems, 134: 101–112. doi: 10.1016/j.jmarsys.2014.03.002
    [30]
    Yang Y J, Fang Y C, Chang M H, et al. 2009. Observations of second baroclinic mode internal solitary waves on the continental slope of the northern South China Sea. Journal of Geophysical Research: Oceans, 114(C10): C10003. doi: 10.1029/2009JC005318
    [31]
    Yang Y J, Fang Y C, Tang T Y, et al. 2010. Convex and concave types of second baroclinic mode internal solitary waves. Nonlinear Processes Geophysics, 17: 605–614. doi: 10.5194/npg-17-605-2010
    [32]
    Yang Y J, Tang T Y, Chang M H, et al. 2004. Solitons northeast of Tung-Sha Island during the ASIAEX pilot studies. IEEE Journal of Oceanic Engineering, 29(4): 1182–1199. doi: 10.1109/JOE.2004.841424
    [33]
    Zhang Z, Fringer O B, Ramp S R. 2011. Three-dimensional, nonhydrostatic numerical simulation of nonlinear internal wave generation and propagation in the South China Sea. Journal of Geophysical Research: Oceans, 116(C5): C05022. doi: 10.1029/2010JC006424
    [34]
    Zhao Zhongxiang. 2014. Internal tide radiation from the Luzon Strait. Journal of Geophysical Research: Oceans, 119(8): 5434–5448. doi: 10.1002/2014JC010014
    [35]
    Zhao Zhongxiang, Alford M H. 2006. Source and propagation of internal solitary waves in the northeastern South China Sea. Journal of Geophysical Research, 111(C11): C11012. doi: 10.1029/2006JC003644
    [36]
    Zheng Quanan. 2017. Satellite SAR Detection of Sub-mesoscale Ocean Dynamic Processes. London: World Scientific, 151–169
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article Metrics

    Article views (363) PDF downloads(17) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return