Numerical study of power production from tidal energy in the Khuran Channel and its feedback on background hydrodynamics

Davood Shariatmadari Seyed Mostafa Siadatmousavi Cyrus Ershadi

Davood Shariatmadari, Seyed Mostafa Siadatmousavi, Cyrus Ershadi. Numerical study of power production from tidal energy in the Khuran Channel and its feedback on background hydrodynamics[J]. Acta Oceanologica Sinica. doi: org/10.1007/s13131-021-1968-y
Citation: Davood Shariatmadari, Seyed Mostafa Siadatmousavi, Cyrus Ershadi. Numerical study of power production from tidal energy in the Khuran Channel and its feedback on background hydrodynamics[J]. Acta Oceanologica Sinica. doi: org/10.1007/s13131-021-1968-y

doi: org/10.1007/s13131-021-1968-y

Numerical study of power production from tidal energy in the Khuran Channel and its feedback on background hydrodynamics

More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  The Persian Gulf and the computational grid, as well as in situ stations used in this study.

    Figure  2.  Comparison between measured and simulated water surface elevation .

    Figure  3.  Comparison between measured and model outputs for the current velocities at Bushehr station (a) and at Deylam station (b).

    Figure  4.  Schematic sketch of horizontal axis tidal turbine (a) and HATT farm (b) [6].

    Figure  5.  Arrangement of the porous plate in the computational grid.

    Figure  6.  Model Result for Co-Tidal lines (a: M2, b: S2, c: K1, d: O1) over the Persian Gulf. Co-amplitude lines are green dash lines and Co-phase lines are red thick lines.

    Figure  7.  Model result for tidal ellipses in the Persian Gulf for main tidal constituents (a: M2, b: S2, c: K1, d: O1).

    Figure  8.  Maximum tidal currents velocity in the PG model during the simulation period.

    Figure  9.  Computational grid and bathymetry of the Qeshm Island and the Iranian coast region (numerical model domain).

    Figure  10.  Calculation of the coefficient of trust [3].

    Figure  11.  Velocity field in spring flood tide (a) and spring ebb tide (b).

    Figure  12.  Arrangement of turbines.

    Figure  13.  Power production of the tidal farm.

    Figure  14.  The difference in the water level during the spring-ebb (a) and spring-flood (b).

    Figure  15.  The difference in the velocity during the spring ebb (a) and spring flood (b).

    Table  1.   Details of measurement stations

    Observation stations>Longitude/°ELatitude/°NMeasurement periodDepth/m
    ID Name
    WL1Qeshm56.279 568 6926.937 464 621/06/2011−1/05/2011
    WL2Rajaie56.066 667 0027.100 000 001/06/2011−1/05/2011
    WL3Keshtisazi55.950 000 0027.033 333 001/06/2011−1/05/2011
    WL4Bushehr50.833 333 0028.983 333 001/06/2011−1/05/2011
    WL5Kangan52.050 000 0027.833 333 001/06/2011−1/05/2011
    WL6Dayer51.933 333 0027.833 333 001/06/2011−1/05/2011
    WL7Deilam50.093 057 5930.075 319 861/06/2011−1/05/2011
    WL8Ganave49.115 414 1530.419 221 541/06/2011−1/05/2011
    WL9Lavr50.480 848 2329.542 620 091/06/2011−1/05/2011
    WL10Jask57.745 214 2025.654 908 651/06/2011−1/05/2011
    V1Bushehr50.859 170 6028.975 604 701/08/2011−1/07/201110
    V2Deilam50.120 510 8829.869 674 001/08/2011−1/07/201125
    下载: 导出CSV

    Table  2.   Water level verification

    Observation stationError analysis
    RMSE/mR
    WL10.2350.948
    WL20.3630.924
    WL30.3740.954
    WL40.1840.924
    WL50.1870.956
    WL60.1940.958
    WL70.3070.91
    WL80.190.941
    WL90.210.91
    WL100.060.995
    下载: 导出CSV

    Table  3.   Current verification

    Observation stationsError analysis
    RMSE/(m·s-1)R
    V10.080.931
    V20.050.910
    下载: 导出CSV
  • [1] Ashtari L A. 2012. Study of tidal energy potential in Iranian coasts of the Persian Gulf[dissertation]. Khorramshahr: Khorramshahr University of Marine Science and Technology
    [2] Bahaj A S, Molland A F, Chaplin J R, et al. 2007. Power and thrust measurements of marine current turbines under various hydrodynamic flow conditions in a cavitation tunnel and a towing tank. Renewable Energy, 32(3): 407–426,doi: 10.1016/j.renene.2006.01.012
    [3] Baston S, Waldman S M, Side J C. 2015. Modelling energy extraction in tidal flows. In: TeraWatt Position Paper, Revision 3.1. MASTS, 75–107,doi: 10.13140/RG.2.1.4620.2481
    [4] Batten W M J, Harrison M E, Bahaj A S. 2013. Accuracy of the actuator disc-RANS approach for predicting the performance and wake of tidal turbines. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 371(1985): 20120293,
    [5] Bir G S, Lawson M J, Li Ye. 2011. Structural design of a horizontal-axis tidal current turbine composite blade. In: ASME 30th International Conference on Ocean, Offshore, and Arctic Engineering. Rotterdam, The Netherlands: NREL
    [6] 2009 补充网址
    [7] Blunden L S, Bahaj A S. 2007. Effects of tidal energy extraction at Portland Bill, southern UK predicted from a numerical model. In: Proceedings of the 7th European Wave and Tidal Energy Conference. Porto, Portugal
    [8] Blunden L S, Bahaj A S, Aziz N S. 2013. Tidal current power for Indonesia? An initial resource estimation for the Alas Strait. Renewable Energy, 49: 137–142,doi: 10.1016/j.renene.2012.01.046
    [9] Brown A J G, Neill S P, Lewis M J. 2017. Tidal energy extraction in three-dimensional ocean models. Renewable Energy, 114: 244–257,doi: 10.1016/j.renene.2017.04.032
    [10] Chen Weibo, Liu Wencheng, Hsu M H. 2013. Modeling assessment of tidal current energy at Kinmen Island, Taiwan. Renewable Energy, 50: 1073–1082,doi: 10.1016/j.renene.2012.08.080
    [11] De Dominicis M, Murray R O, Wolf J. 2017. Multi-scale ocean response to a large tidal stream turbine array. Renewable Energy, 114: 1160–1179,doi: 10.1016/j.renene.2017.07.058
    [12] Deltares. 2014. Delft3D-FLOW User Manual, Hydro-Morphodynamics, Version 3.15. 34158. Technical Report. http://content.oss.deltares.nl/delft3d/manuals/Delft3D-FLOW_User_Manual.pdf
    [13] Hardisty J. 2009. Australia and New Zealand. In: The Analysis of Tidal Stream Power. Chichester: John Wiley & Sons Inc. , 233−248,
    [14] Khosravi M, Siadat Mousavi S M, Chegini V, et al. 2018. Across-channel distribution of the mean and tidal flows in the Khuran Channel, Persian Gulf, Iran. International Journal of Maritime Technology, 10: 1-6,doi: 10.29252/ijmt.10.1
    [15] Mungar S. 2014. Hydrodynamics of horizontal-axis tidal current turbines: A modelling approach based on Delft3D[dissertation]. Delft, Netherlands: Delft University of Technology
    [16] Neary V S, Gunawan B, Hill C, et al. 2013. Near and far field flow disturbances induced by model hydrokinetic turbine: ADV and ADP comparison. Renewable Energy, 60: 1–6,doi: 10.1016/j.renene.2013.03.030
    [17] Ramos V, Iglesias G. 2013. Performance assessment of Tidal Stream Turbines: A parametric approach. Energy Conversion and Management, 69: 49–57,doi: 10.1016/j.enconman.2013.01.008
    [18] Tidal clients. EMEC: European Marine Energy Centre. http://www.emec.org.uk/about-us/our-tidal-clients/[2013-11-25/2021-3-30]
    [19] Waldman S, Bastón S, Nemalidinne R, et al. 2017. Implementation of tidal turbines in MIKE 3 and Delft3D models of Pentland Firth & Orkney Waters. Ocean & Coastal Management, 147: 21–36,doi: 10.1016/j.ocecoaman.2017.04.015
  • 加载中
计量
  • 文章访问数:  15
  • HTML全文浏览量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-30
  • 录用日期:  2021-09-30
  • 网络出版日期:  2022-04-13

目录

    /

    返回文章
    返回