Carbonate system in the subtropical Jiulong River estuary and CO2 flux estimation under modulation of tidal cycle

Weicong Chen Heng Sun Zhongyong Gao Jiaming Lin Min Xu Aijun Wang Shuqin Tao

Weicong Chen, Heng Sun, Zhongyong Gao, Jiaming Lin, Min Xu, Aijun Wang, Shuqin Tao. Carbonate system in the subtropical Jiulong River estuary and CO2 flux estimation under modulation of tidal cycle[J]. Acta Oceanologica Sinica. doi: 10.1007/s13131-024-0000-0
Citation: Weicong Chen, Heng Sun, Zhongyong Gao, Jiaming Lin, Min Xu, Aijun Wang, Shuqin Tao. Carbonate system in the subtropical Jiulong River estuary and CO2 flux estimation under modulation of tidal cycle[J]. Acta Oceanologica Sinica. doi: 10.1007/s13131-024-0000-0

doi: 10.1007/s13131-024-0000-0

Carbonate system in the subtropical Jiulong River estuary and CO2 flux estimation under modulation of tidal cycle

Funds: The Scientific Research Foundation of Third Institute of Oceanography, MNR under contract Nos. 2022001, 2020017, 2023008 and 2019018; Natural Science Foundation of Fujian Province of China under contract No. 2023J01209; National Natural Science Foundation of China under contract No. 4237061213; Fujian science and technology innovation leader project.
More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  Map of Jiulong River estuary with the location of the sampling stations. Different symbols represent different cruises, and the dotted lines are the boundaries of the upper ,middle, and lower reaches of the estuary. The sampling stations J4, J8, J10, J12, J14 were consistently surveyed across the seven cruises in this study.

    Figure  2.  The variations of salinity, temperature, DO% and turbidity with the longitude

    Figure  3.  The monthly average water discharge of the Jurong River in 2019 and 2021. The shaded area shows the historical monthly average data from 1961 to 2022 and the four-pointed stars represent the dates of the survey cruises in this study.

    Figure  4.  Spatial distribution of carbonate system parameters during tidal cycle.

    Figure  5.  Variations of DIC (a, b, c, d), TA (e, f, g, h) with salinity. grey line is the mixing line obtained by end- member model calculation for each cruise.

    Figure  6.  Diagrams of the concentrations of DIC and dissolved carbon dioxide ([CO2]) versus salinity during estuarine mixing. (a) represents the calculation of the DIC composition of the estuary, with salinity on the X-axis and DIC concentration on the Y-axis; (b) represents the calculation of [CO2] composition of the estuary, with salinity on the X-axis and dissolved CO2 concentration on the Y-axis.

    Figure  7.  Histogram of the proportion of DIC composition in the JRE.

    Figure  8.  Variation of NpCO2(T=24.9℃) with longitude in the JRE

    Figure  9.  Histogram of the proportion of [CO2] composition in the estuary.

    Figure  10.  Variations of [CO2] with salinity, the grey dashed line represents the [CO2] from the conservative mixing of the river with the ocean, and the black solid line represents the [CO2] provided by the ocean in the mixing.

    Table  1.   The range of temperature, salinity, dissolved oxygen and turbidity parameters for all cruises, by Mean±SD.

    DateTideT/℃SalinityDO/%Turb/FTU
    UpperMiddleLowerUpperMiddleLowerUpperMiddleLowerUpperMiddleLower
    20210626Low28.1±0.327.8±0.327.9±0.70.38.0±7.028.8±2.668.6±7.364.6±8.982.9±2.4
    High28.6±0.327.9±0.527.3±0.61.4±1.621.9±6.531.4±1.860.5±10.679.4±893.7±2.4
    20211021Low26.3±0.225.7±0.326.0±0.21.5±0.711.8±5.627.7±3.459.3±6.353.7±19.868.6±3.399.4±75.885.3±36.561.9±38
    High25.9±0.225.7±0.226.1±0.19.7±625.1±531.9±0.552.9±9.968.8±1279.6±4.3123.5±82.883.7±71.5117.2±113
    20211027Low24.8±0.224.2±0.324.2±0.21.6±1.711.9±5.427.7±356.6±2.853.7±12.463.8±8.177.0±41.976.4±59.753.2±70.4
    High25±0.224.4±0.124.4±0.17.7±4.323.2±5.330.5±0.754.4±6.863.6±1070.8±1451.7±39.342.4±19.934.7±21.9
    2019011919.0±0.618.1±0.517.5±0.34.5±3.114.9±4.824.4±0.9
    下载: 导出CSV

    Table  2.   The range of carbonate parameters for all cruises, by Mean±SD. The pCO2 data is only for the surface water, and the rest includes the surface and bottom water.

    SeasonCruiseTideDIC/μmol kg−1TA/μmol kg−1pHpCO2/μatm
    UpperMiddleLowerUpperMiddleLowerUpperMiddleLowerUpperMiddleLower
    Summer20210626Low1035±451281±2121850±72867±551198±2731984±1117.0±0.17.2±0.27.8±0.15599±18683245±1496841±187
    High1093±761664±1691900±48952±891720±2372074±717.07.6±0.27.84760±2641309±613657±62
    Seasonal average1549±3621574±4987.5±0.42620±2093
    Autumn20211021Low1115±531515±1501868±631029±721503±1781958±947.2±0.17.5±0.17.7±0.12757±6491527±3081007±138
    High1431±1761812±971944±111397±2061898±1452129±187.4±0.17.7±0.17.91886±336922±174613±12
    20211027Low1072±741540±1621881±51954±1031502±2261966±797.1±0.17.4±0.37.7±0.13473±7521409±4901029±192
    High1422±2071811±901941±121334±2141875±1362092±287.2±0.17.7±0.17.83239±6221013±251686±65
    Seasonal average1594±3141608±4087.5±0.31771±1060
    Winter201901191349±1841707±1221941±231306±1841708±1772028±397.5±0.27.6±0.27.8±0.11335±6561576±1065711±204
    Seasonal average1633±2421633±2977.6±0.21369±880
    下载: 导出CSV

    Table  3.   CO2 fluxes at the air-sea interface of JRE.

    Cruise Zone T/℃ S/PSU ΔpCO2/µatm U10/m·s−1 F(Jiang2008) F(Vam2019) F (Ho2011) Fluxes/mmol−1·m−2·d−1
    20210626LT Upper 28.0 0.3 5216 2.07 199.81 ± 71.74 292.57 ± 105.04 53.99 ± 19.38 182.12 ± 120.27
    Middle 28.0 7.3 2857 2.07 107.22 ± 58.98 157 ± 86.37 28.97 ± 15.94 97.73 ± 64.54
    Lower 27.8 27.6 449 2.07 15.08 ± 6.59 22.08 ± 9.65 4.07 ± 1.78 13.74 ± 9.08
    20210626HT Upper 28.8 1.1 4375 2.07 167.30 ± 10.65 244.97 ± 15.59 45.20 ± 2.88 152.49 ± 100.71
    Middle 27.6 20.4 918 2.07 32.54 ± 22.91 47.65 ± 33.54 8.79 ± 6.19 29.66 ± 19.59
    Lower 27.4 30.8 263 2.07 8.61 ± 2.20 12.61 ± 3.23 2.33 ± 0.6 7.85 ± 5.18
    20211021LT Upper 26.2 1.4 2355 3.05 113.75 ± 31.62 158.18 ± 43.97 51.75 ± 14.38 107.89 ± 53.46
    Middle 25.7 10.8 1129 3.05 52.40 ± 15.53 72.87 ± 21.59 23.84 ± 7.06 49.71 ± 24.63
    Lower 25.8 25.2 612 3.05 26.37 ± 6.42 36.67 ± 8.93 12 ± 2.92 25.01 ± 12.39
    20211021HT Upper 25.9 8.2 1486 3.05 69.87 ± 17.30 97.16 ± 24.06 31.78 ± 7.87 66.27 ± 32.83
    Middle 25.7 23.8 525 3.05 22.87 ± 8.23 31.81 ± 11.44 10.41 ± 3.74 21.7 ± 10.75
    Lower 26.0 31.7 216 3.05 8.89 ± 0.52 12.36 ± 0.72 4.04 ± 0.24 8.43 ± 4.18
    20211027LT Upper 24.9 1.0 3069 4.34 213.58 ± 53.06 251.69 ± 62.53 135.16 ± 33.58 200.14 ± 59.42
    Middle 24.3 11.1 1008 4.34 67.47 ± 34.45 79.51 ± 40.60 42.69 ± 21.8 63.22 ± 18.77
    Lower 24.1 25.3 631 4.34 39.08 ± 12.17 46.06 ± 14.34 24.73 ± 7.7 36.63 ± 10.87
    20211027HT Upper 25.1 6.4 2836 4.34 192.46 ± 42.18 226.81 ± 49.7 121.79 ± 26.69 180.35 ± 53.54
    Middle 24.4 22.3 615 4.34 38.88 ± 16.95 45.82 ± 19.98 24.6 ± 10.73 36.43 ± 10.82
    Lower 24.4 30.2 287 4.34 17.21 ± 4.06 20.29 ± 4.78 10.89 ± 2.57 16.16 ± 4.79
    20190119 Upper 19.3 5.2 929 1.6 33.35 ± 23.84 47.88 ± 34.23 6.04 ± 4.32 29.09 ± 21.24
    Middle 18.4 14.1 1171 1.6 40.65 ± 37.38 58.36 ± 53.67 7.37 ± 6.77 35.46 ± 25.89
    Lower 17.7 23.8 308 1.6 9.99.16 ± 6.75 14.34 ± 9.69 1.81 ± 1.22 8.71 ± 6.36
    下载: 导出CSV

    Table  4.   End-member values of DIC and TA used in mixing model calculation

    Date River end-member Ocean end-member
    DIC/μmol kg−1 TA/μmol kg−1 Salinity DIC/μmol kg−1 TA/μmol kg−1 Salinity
    20210626 958 827 0.3 1920 2112 32.2
    20211021 1027 917 0.5 1954 2145 32.1
    20211027 975 831 0.2 1954 2145 32.1
    20190119 1181 1101 1.8 2045 2203 32
    Note: The ocean end-member for January 19, 2019 utilizes Lin’s observations near Xiamen Bay (Lin, 2012), and the rest is from this study. The ocean end-member for both October 21st and October 27th is identical due to the presence of low salinity at the farthest station on the latter date. Consequently, the high-salinity end-member from October 21st is selected in both cruises.
    下载: 导出CSV

    Table  5.   The sea surface pCO2 and air-sea CO2 fluxes from different estuaries in the world.

    Estuary Country Area/km2 pCO2/µatm CO2 flux/mol m-2 yr-1 Reference
    Jiulong River Estuary China 110 530~7715 25.7 This study
    Modaomen Estuary China 1012 30.8 Tang et al. (2018)
    Yangtze River Estuary China 10800 650~4600 14.6 Zhai et al. (2007)
    Yellow River Estuary China 1521 6.14 Shen et al. (2020)
    Hooghly estuary India 325 559~3679 47.3 Akhand et al. (2022)
    Mekong inner estuary Vietnam 44.2 Borges et al. (2018)
    Tagus estuary Portugal 320 487~4575 33.6 Oliveira et al. (2017)
    Elbe inner estuary Germany 276 380~2200 40.4 Amann et al. (2015)
    Guadalquivir estuary Spain 39 520~3606 31.1 De la Paz et al. (2007)
    Coffs Creek estuary Australia 403~7920 18.4 Jeffrey et al. (2018)
    Neuse River Estuary US 455 196~2510 4.7 Crosswell et al. (2012)
    下载: 导出CSV
  • Abril G, Borges A V. 2005. Carbon dioxide and methane emissions from estuaries. In: Tremblay A, Varfalvy L, Roehm C, et al. , eds. Greenhouse Gas Emissions—Fluxes and Processes: Hydroelectric Reservoirs and Natural Environments. Berlin, Heidelberg: Springer, 187–207
    Akhand A, Chanda A, Watanabe K, et al. 2022. Drivers of inorganic carbon dynamics and air–water CO2 fluxes in two large tropical estuaries: Insights from coupled radon (222Rn) and pCO2 surveys. Limnology and Oceanography, 67(S2): S118–S132
    Amann T, Weiss A, Hartmann J. 2015. Inorganic carbon fluxes in the Inner Elbe Estuary, Germany. Estuaries and Coasts, 38(1): 192–210, doi: 10.1007/s12237-014-9785-6
    Borges A V, Abril G, Bouillon S. 2018. Carbon dynamics and CO2 and CH4 outgassing in the Mekong delta. Biogeosciences, 15(4): 1093–1114, doi: 10.5194/bg-15-1093-2018
    Borges A V, Delille B, Frankignoulle M. 2005. Budgeting sinks and sources of CO2 in the coastal ocean: Diversity of ecosystems counts. Geophysical Research Letters, 32(14): L14601
    Cai Weijun, Dai Minhan, Wang Yongchen. 2006. Air-sea exchange of carbon dioxide in ocean margins: A province-based synthesis. Geophysical Research Letters, 33(12): L12603
    Chen Chen-Tung Arthur, Huang Ting-Hsuan, Chen YC, et al. 2013. Air–sea exchanges of CO2 in the world's coastal seas. Biogeosciences, 10(10): 6509–6544, doi: 10.5194/bg-10-6509-2013
    Chen Chen-Tung Arthur, Huang Ting-Hsuan, Fu Yu-Han, et al. 2012. Strong sources of CO2 in upper estuaries become sinks of CO2 in large river plumes. Current Opinion in Environmental Sustainability, 4(2): 179–185, doi: 10.1016/j.cosust.2012.02.003
    Crosswell J R, Wetz M S, Hales B, et al. 2012. Air-water CO2 fluxes in the microtidal Neuse River estuary, North Carolina. Journal of Geophysical Research: Oceans, 117(C8): C08017
    Dai Minhan, Lu Zhongming, Zhai Weidong, et al. 2009. Diurnal variations of surface seawater pCO2 in contrasting coastal environments. Limnology and Oceanography, 54(3): 735–745, doi: 10.4319/lo.2009.54.3.0735
    De la Paz M, Gómez-Parra A, Forja J. 2007. Inorganic carbon dynamic and air–water CO2 exchange in the Guadalquivir Estuary (SW Iberian Peninsula). Journal of Marine Systems, 68(1–2): 265–277, doi: 10.1016/j.jmarsys.2006.11.011
    Gattuso J P, Frankignoulle M, Wollast R. 1998. Carbon and carbonate metabolism in coastal aquatic ecosystems. Annual Review of Ecology and Systematics, 29: 405–434, doi: 10.1146/annurev.ecolsys.29.1.405
    Gran G, Dahlenborg H, Laurell S, et al. 1950. Determination of the equivalent point in potentiometric titrations. Acta Chemica Scandinavica, 4: 559–577, doi: 10.3891/acta.chem.scand.04-0559
    Guo Xianghui, Cai Weijun, Zhai Weidong, et al. 2008. Seasonal variations in the inorganic carbon system in the Pearl River (Zhujiang) estuary. Continental Shelf Research, 28(12): 1424–1434, doi: 10.1016/j.csr.2007.07.011
    Hellings L, Dehairs F, Van Damme S, et al. 2001. Dissolved inorganic carbon in a highly polluted estuary (the Scheldt). Limnology and Oceanography, 46(6): 1406–1414, doi: 10.4319/lo.2001.46.6.1406
    Ho D T, Coffineau N, Hickman B, et al. 2016. Influence of current velocity and wind speed on air-water gas exchange in a mangrove estuary. Geophysical Research Letters, 43(8): 3813–3821, doi: 10.1002/2016GL068727
    Ho D T, Schlosser P, Orton P M. 2011. On factors controlling air–water gas exchange in a large tidal river. Estuaries and Coasts, 34(6): 1103–1116, doi: 10.1007/s12237-011-9396-4
    Jahnke R A, Alexander C R, Kostka J E. 2003. Advective pore water input of nutrients to the Satilla River Estuary, Georgia, USA. Estuarine, Coastal and Shelf Science, 56(3–4): 641–653
    Jeffrey L C, Maher D T, Santos I R, et al. 2018. The spatial and temporal drivers of pCO2, pCH4 and gas transfer velocity within a subtropical estuary. Estuarine, Coastal and Shelf Science, 208: 83–95
    Jiang Liqing, Cai Weijun, Wang Yongchen. 2008. A comparative study of carbon dioxide degassing in river-and marine-dominated estuaries. Limnology and Oceanography, 53(6): 2603–2615, doi: 10.4319/lo.2008.53.6.2603
    Laruelle G G, Dürr H H, Lauerwald R, et al. 2013. Global multi-scale segmentation of continental and coastal waters from the watersheds to the continental margins. Hydrology and Earth System Sciences, 17(5): 2029–2051, doi: 10.5194/hess-17-2029-2013
    Lewis E R, Wallace D W R. 1998. Program developed for CO2 system calculations. Oak Ridge: Environmental System Science Data Infrastructure for a Virtual Ecosystem
    Li Gong, Gao Kunshan, Yuan Dongxing, et al. 2011. Relationship of photosynthetic carbon fixation with environmental changes in the Jiulong River estuary of the South China Sea, with special reference to the effects of solar UV radiation. Marine Pollution Bulletin, 62(8): 1852–1858, doi: 10.1016/j.marpolbul.2011.02.050
    Li Yuhong, Luo Yang, Liu Jian, et al. 2023. Sources and sinks of N2O in the subtropical Jiulong River Estuary, Southeast China. Frontiers in Marine Science, 10: 1138258, doi: 10.3389/fmars.2023.1138258
    Li Chenglong, Zhai Weidong, Qi Di. 2022. Unveiling controls of the latitudinal gradient of surface pCO2 in the Kuroshio Extension and its recirculation regions (northwestern North Pacific) in late spring. Acta Oceanologica Sinica, 41(5): 110–123, doi: 10.1007/s13131-021-1949-1
    Li Yuhong, Zhan Liyang, Chen Liqi, et al. 2021. Spatial and temporal patterns of methane and its influencing factors in the Jiulong River estuary, southeastern China. Marine Chemistry, 228: 103909, doi: 10.1016/j.marchem.2020.103909
    Lin Hui. 2012. Seasonal and spatial variation of dissolved inorganic and organic carbon in Taiwan Strait and the Adjacent Sea Area (in Chinese)[dissertation]. Xiamen: Xiamen University
    Liu Qian, Dong Xu, Chen Jinshun, et al. 2019. Diurnal to interannual variability of sea surface pCO2 and its controls in a turbid tidal-driven nearshore system in the vicinity of the East China Sea based on buoy observations. Marine Chemistry, 216: 103690, doi: 10.1016/j.marchem.2019.103690
    Millero F J. 2010. Carbonate constants for estuarine waters. Marine and Freshwater Research, 61(2): 139–142, doi: 10.1071/MF09254
    Oliveira A P, Cabeçadas G, Mateus M D. 2017. Inorganic carbon distribution and CO2 fluxes in a large European estuary (Tagus, Portugal). Scientific Reports, 7(1): 7376, doi: 10.1038/s41598-017-06758-z
    Orr J, Epitalon J M, Gattuso J P. 2015. Comparison of ten packages that compute ocean carbonate chemistry. Biogeosciences, 12(5): 1483–1510, doi: 10.5194/bg-12-1483-2015
    Pritchard D W. 1967. What is an estuary: physical viewpoint. In: Lauff G H, ed. Estuaries. Washington: American Association for the Advancement of Science
    Raymond P A, Cole J J. 2001. Gas exchange in rivers and estuaries: Choosing a gas transfer velocity. Estuaries, 24(2): 312–317, doi: 10.2307/1352954
    Ries J B. 2011. A physicochemical framework for interpreting the biological calcification response to CO2 induced ocean acidification. Geochimica et Cosmochimica Acta, 75(14): 4053–4064, doi: 10.1016/j.gca.2011.04.025
    Rosentreter J A, Maher D T, Ho D T, et al. 2017. Spatial and temporal variability of CO2 and CH4 gas transfer velocities and quantification of the CH4 microbubble flux in mangrove dominated estuaries. Limnology and Oceanography, 62(2): 561–578, doi: 10.1002/lno.10444
    Samanta S, Dalai T K, Pattanaik J K, et al. 2015. Dissolved inorganic carbon (DIC) and its δ13C in the Ganga (Hooghly) River estuary, India: Evidence of DIC generation via organic carbon degradation and carbonate dissolution. Geochimica et Cosmochimica Acta, 165: 226–248, doi: 10.1016/j.gca.2015.05.040
    Shen Xiaomei, Su Meirong, Sun Tao, et al. 2020. Net heterotrophy and low carbon dioxide emissions from biological processes in the Yellow River Estuary, China. Water Research, 171: 115457, doi: 10.1016/j.watres.2019.115457
    Sun Heng, Gao Zhongyong, Qi Di, et al. 2020. Surface seawater partial pressure of CO2 variability and air-sea CO2 fluxes in the Bering Sea in July 2010. Continental Shelf Research, 193: 104031, doi: 10.1016/j.csr.2019.104031
    Sun Heng, Gao Zhongyong, Zhao Derong, et al. 2021. Spatial variability of summertime aragonite saturation states and its influencing factor in the Bering Sea. Advances in Climate Change Research, 12(4): 508–516, doi: 10.1016/j.accre.2021.04.001
    Takahashi T, Olafsson J, Goddard J G, et al. 1993. Seasonal variation of CO2 and nutrients in the high-latitude surface oceans: A comparative study. Global Biogeochemical Cycles, 7(4): 843–878, doi: 10.1029/93GB02263
    Takahashi T, Sutherland S C, Sweeney C, et al. 2002. Global sea–air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects. Deep-Sea Research Part II: Topical Studies in Oceanography, 49(9–10): 1601–1622, doi: 10.1016/S0967-0645(02)00003-6
    Takahashi T, Sutherland S C, Wanninkhof R, et al. 2009. Climatological mean and decadal change in surface ocean pCO2, and net sea–air CO2 flux over the global oceans. Deep-Sea Research Part II: Topical Studies in Oceanography, 56(8–10): 554–577, doi: 10.1016/j.dsr2.2008.12.009
    Tang Wenkui, Gao Quanzhou, Zheng Xiongbo, et al. 2018. Air-water CO2 exchange fluxes and its controlling mechanism in modaomen estuary of the Pearl River, China. Ekoloji, 27(106): e601
    Van Dam B R, Edson J B, Tobias C. 2019. Parameterizing air-water gas exchange in the shallow, microtidal New River estuary. Journal of Geophysical Research: Biogeosciences, 124(7): 2351–2363, doi: 10.1029/2018JG004908
    Walsh J J. 1988. On the Nature of Continental Shelves. New York: Academic Press, 367–437
    Wang Guizhi, Wang Zhangyong, Zhai Weidong, et al. 2015. Net subterranean estuarine export fluxes of dissolved inorganic C, N, P, Si, and total alkalinity into the Jiulong River estuary, China. Geochimica et Cosmochimica Acta, 149: 103–114, doi: 10.1016/j.gca.2014.11.001
    Wang Zhaohui, Wanninkhof R, Cai Weijun, et al. 2013. The marine inorganic carbon system along the Gulf of Mexico and Atlantic coasts of the United States: Insights from a transregional coastal carbon study. Limnology and Oceanography, 58(1): 325–342, doi: 10.4319/lo.2013.58.1.0325
    Weiss R F. 1974. Carbon dioxide in water and seawater: the solubility of a non-ideal gas. Marine Chemistry, 2(3): 203–215, doi: 10.1016/0304-4203(74)90015-2
    Wu Gaojie, Cao Wenzhi, Huang Zheng, et al. 2017. Decadal changes in nutrient fluxes and environmental effects in the Jiulong River Estuary. Marine Pollution Bulletin, 124(2): 871–877, doi: 10.1016/j.marpolbul.2017.01.071
    Yan Xiuli, Zhai Weidong, Hong Huasheng, et al. 2012. Distribution, fluxes and decadal changes of nutrients in the Jiulong River Estuary, Southwest Taiwan Strait. Chinese Science Bulletin, 57(18): 2307–2318, doi: 10.1007/s11434-012-5084-4
    Yin Xijie, Lin Yunpeng, Liang Cuicui, et al. 2020. Source and fate of dissolved inorganic carbon in Jiulong River, southeastern China. Estuarine, Coastal and Shelf Science, 246: 107031
    Zhai Weidong, Dai Minhan, Guo Xianghui. 2007. Carbonate system and CO2 degassing fluxes in the inner estuary of Changjiang (Yangtze) River, China. Marine Chemistry, 107(3): 342–356, doi: 10.1016/j.marchem.2007.02.011
    Zheng Senlin, Qiu Xiaoyan, Chen Bin, et al. 2011. Antibiotics pollution in Jiulong River estuary: Source, distribution and bacterial resistance. Chemosphere, 84(11): 1677–1685, doi: 10.1016/j.chemosphere.2011.04.076
  • 加载中
计量
  • 文章访问数:  93
  • HTML全文浏览量:  40
  • 被引次数: 0
出版历程
  • 网络出版日期:  2024-11-27

目录

    /

    返回文章
    返回