The significant role of submarine groundwater discharge in an Arctic fjord nutrient budget
-
Abstract: Under global climate change, water flow and related nutrient biogeochemistry in the Arctic are changing at an unprecedented rate, and potentially affect nutrient cycling in the Arctic Ocean. However, nutrient fluxes via submarine groundwater discharge (SGD) are potentially important yet poorly understood in the Arctic. Here we quantified that nutrient fluxes through radium-derived SGD were three orders of magnitude higher than those from the local river and constituted 25-96% of the total nutrient inputs into the Kongsfjorden. These large groundwater nutrient fluxes with high N/P ratio (average 99) may change the biomass and community structure of phytoplankton. Meanwhile, combining other SGD study cases around the Arctic region, SGD rates tend to increase over the past three decades, possibly on account of the effects of global warming. The SGD-derived nutrient may cause the increase of net primary productivity in the Arctic Ocean. The results will provide important basic data for land-ocean interactions in the typical fjord of the Arctic under the influence of global warming.
-
Figure 1. Locations of the Kongsfjorden and sampling station during 2017. Blue circles, orange diamonds and red triangle represent surface water, river water and groundwater, respectively. Blue arrows indicate ocean currents of Atlantic Water (AW) and Arctic Coastal Water (ACW) (Zhu, 2022).
Figure 5. Schematic diagram for DIN and DIP budgets (all in mol/d) in the upper Kongsfjorden during our sampling period (some data from Piquet et al., 2014; Stewart et al., 2014; Zhu et al., 2016; Chen et al., 2018; Hop and Wiencke, 2019; Kim et al., 2020).
Figure 6. (a) Locations of SGD flux study cases, as viewed from the geographic North Pole. (b) Distribution of SGD rates (cm/d) for each study site in the Arctic Ocean. The numbers correspond to the study cases in (a). (c) The trend of net primary production in the Arctic Ocean from 2000-2017 that modified from Lewis et al. (2020). (d) The distribution of SGD rates (cm/d) in the Arctic Ocean from 1983-2017. The SGD rate data from Connolly et al., 2020; Cornwell, 1985; Dabrowski et al., 2020; Deming et al., 1992; Dimova et al., 2015; Dzyuba and Zektser, 2013; Hay, 1984; Lecher et al., 2016a; Lecher, 2017; Linhoff et al., 2017; Neilson et al., 2018; Wales et al., 2020; Whalen and Charkin, 1985.
Table 1. Concentrations of 226Ra ,228Ra, nutrient and other parameters in all samples collected in the Kongsfjorden
Station Latitude/°N Longitude/°E Temp/℃ Salinity pH DO/
mgžL−1228Ra/
dpmž100L−1226Ra/
dpmž100L−1DIN/
μmolžL−1DIP/
μmolžL−1DSi/
μmolžL−1Seawater K2 78.9687 11.8292 3.7 31.7 8.3 12.9 2.4±0.37 2.2±0.32 5.17 0.234 0.591 K3 78.9518 11.9727 6.6 30.8 8.5 13.1 3.1±0.45 2.5±0.30 7.58 0.073 1.50 K4 78.9161 12.3308 6.7 31.3 8.5 13.0 2.3±0.32 2.9±0.25 − − − K5 78.9705 12.3811 7.3 32.3 8.4 12.7 2.0±0.25 2.4±0.22 7.68 0.103 1.99 K6 78.9592 12.3026 6.5 32.2 8.4 12.8 1.7±0.27 2.3±0.22 − − − K7 78.9303 12.2014 6.5 31.5 8.5 13.4 3.1±0.25 3.3±0.20 − − − K8 78.9936 12.3300 6.5 30.9 8.5 13.3 2.4±0.25 2.4±0.18 − − − K9 78.9302 12.4000 4.9 31.4 8.3 12.7 2.3±0.40 2.8±0.32 − − − K10 78.9405 12.1013 5.4 31.1 8.6 12.6 1.9±0.30 2.1±0.20 − − − Groundwater GW1 78.9300 11.9307 4.0 0.0 8.1 0.2 8.6±0.30 6.1±0.25 63.70 0.369 48.8 GW2 78.9502 11.9008 3.5 16.5 8.3 12.5 19.2±0.37 8.6±0.28 5.76 0.234 8.02 River water RW 78.9350 11.9203 1.9 0.2 8.6 13.0 3.5±0.43 2.7±0.28 11.8 0.330 10.5 Open sea K1 78.9899 11.6520 4.0 33.2 8.7 13.3 1.5±0.48 2.0±0.28 4.53 0.205 0.758 -
Arrigo K R, van Dijken G L. 2011. Secular trends in Arctic Ocean net primary production. Journal of Geophysical Research: Oceans, 116(C9): C09011. doi: 10.1029/2011JC007151 Baléo J N, Humeau P, Le Cloirec P. 2001. Numerical and experimental hydrodynamic studies of a lagoon pilot. Water Research, 35(9): 2268–2276. doi: 10.1016/S0043-1354(00)00502-9 Berelson W M, Heggie D, Longmore A, et al. 1998. Benthic nutrient recycling in Port Phillip Bay, Australia. Estuarine, Coastal and Shelf Science, 46(6): 917–934. Bridgestock L, Nathan J, Hsieh Y T, et al. 2021a. Assessing the utility of barium isotopes to trace Eurasian riverine freshwater inputs to the Arctic Ocean. Marine Chemistry, 236: 104029. doi: 10.1016/j.marchem.2021.104029 Bridgestock L, Nathan J, Paver R, et al. 2021b. Estuarine processes modify the isotope composition of dissolved riverine barium fluxes to the ocean. Chemical Geology, 579: 120340. doi: 10.1016/j.chemgeo.2021.120340 Bullock E J, Kipp L, Moore W, et al. 2022. Radium inputs into the Arctic Ocean from rivers: A basin-wide estimate. Journal of Geophysical Research: Oceans, 127(9): e2022JC018964. doi: 10.1029/2022JC018964 Burnett W C, Bokuniewicz H, Huettel M, et al. 2003. Groundwater and pore water inputs to the coastal zone. Biogeochemistry, 66(1): 3–33. doi: 10.1023/B:BIOG.0000006066.21240.53 Carmack E C, Yamamoto-Kawai M, Haine T W N, et al. 2016. Freshwater and its role in the Arctic Marine System: Sources, disposition, storage, export, and physical and biogeochemical consequences in the Arctic and global oceans. Journal of Geophysical Research: Biogeosciences, 121(3): 675–717. doi: 10.1002/2015JG003140 Cerdà-Domènech M, Rodellas V, Folch A, et al. 2017. Constraining the temporal variations of Ra isotopes and Rn in the groundwater end-member: Implications for derived SGD estimates. Science of the Total Environment, 595: 849–857. doi: 10.1016/j.scitotenv.2017.03.005 Charette M A, Breier C F, Henderson P B, et al. 2013. Radium-based estimates of cesium isotope transport and total direct ocean discharges from the Fukushima Nuclear Power Plant accident. Biogeosciences, 10(3): 2159–2167. doi: 10.5194/bg-10-2159-2013 Charkin A N, van der Loeff M R, Shakhova N E, et al. 2017. Discovery and characterization of submarine groundwater discharge in the Siberian Arctic seas: a case study in the Buor-Khaya Gulf, Laptev Sea. The Cryosphere, 11(5): 2305–2327. doi: 10.5194/tc-11-2305-2017 Chen Meilian, Kim J H, Nam S I, et al. 2016. Production of fluorescent dissolved organic matter in Arctic Ocean sediments. Scientific Reports, 6(1): 39213. doi: 10.1038/srep39213 Chen Xiaogang, Lao Yanling, Wang Jinlong, et al. 2018. Submarine groundwater-borne nutrients in a tropical bay (Maowei Sea, China) and their impacts on the oyster aquaculture. Geochemistry, Geophysics, Geosystems, 19(3): 932–951. Cho H M, Kim G. 2017. Large temporal changes in contributions of groundwater-borne nutrients to coastal waters off a volcanic island. Ocean Science Journal, 52(3): 337–344. doi: 10.1007/s12601-017-0033-4 Collins M, Knutti R, Arblaster J, et al. 2013. Long-term climate change: projections, commitments and irreversibility. In: Climate Change 2013-The Physical Science Basis: Contribution of Working Group I to the fifth Assessment Report of the Intergovernmental Panel on Climate Change. New York, USA: Cambridge University Press, 1029–1136 Connolly C T, Cardenas M B, Burkart G A, et al. 2020. Groundwater as a major source of dissolved organic matter to Arctic coastal waters. Nature Communications, 11(1): 1479. doi: 10.1038/s41467-020-15250-8 Deming D, Sass J H, Lachenbruch A H, et al. 1992. Heat flow and subsurface temperature as evidence for basin-scale ground-water flow, North Slope of Alaska. GSA Bulletin, 104(5): 528–542. doi: 10.1130/0016-7606(1992)104<0528:HFASTA>2.3.CO;2 Dimova N T, Burnett W C. 2011. Evaluation of groundwater discharge into small lakes based on the temporal distribution of radon-222. Limnology and Oceanography, 56(2): 486–494. doi: 10.4319/lo.2011.56.2.0486 Dimova N T, Paytan A, Kessler J D, et al. 2015. Current magnitude and mechanisms of groundwater discharge in the Arctic: Case study from Alaska. Environmental Science & Technology, 49(20): 12036–12043. doi: 10.1021/acs.est.5b02215 Duan Liangliang, Man Xiuling, Kurylyk B L, et al. 2017. Increasing winter baseflow in response to permafrost thaw and precipitation regime shifts in northeastern China. Water, 9(1): 25. doi: 10.3390/w9010025 Dzyuba A V, Zektser I S. 2013. Variations in submarine groundwater runoff as a possible cause of decomposition of marine methane-hydrates in the Arctic. Water Resources, 40(1): 74–83. doi: 10.1134/S009780781301003x Frederick J M, Buffett B A. 2015. Effects of submarine groundwater discharge on the present-day extent of relict submarine permafrost and gas hydrate stability on the Beaufort Sea continental shelf. Journal of Geophysical Research: Earth Surface, 120(3): 417–432. doi: 10.1002/2014JF003349 Garcia-Orellana J, Rodellas V, Tamborski J, et al. 2021. Radium isotopes as submarine groundwater discharge (SGD) tracers: Review and recommendations. Earth-Science Reviews, 220: 103681. doi: 10.1016/j.earscirev.2021.103681 Geyer W R, Morris J T, Prahl F G, et al. 2000. Interaction between physical processes and ecosystem structure: A comparative approach. In: Hobbie J, ed. Estuarine Science: A Synthetic Approach to Research and Practice. Washington, DC: Island Press, 177–206 Glibert P M, Mayorga E, Seitzinger S. 2008. Prorocentrum minimum tracks anthropogenic nitrogen and phosphorus inputs on a global basis: application of spatially explicit nutrient export models. Harmful Algae, 8(1): 33–38. doi: 10.1016/j.hal.2008.08.023 Guimond J A, Mohammed A A, Walvoord M A, et al. 2022. Sea-level rise and warming mediate coastal groundwater discharge in the Arctic. Environmental Research Letters, 17(4): 045027. doi: 10.1088/1748-9326/ac6085 Haine T W N, Curry B, Gerdes R, et al. 2015. Arctic freshwater export: Status, mechanisms, and prospects. Global and Planetary Change, 125: 13–35. doi: 10.1016/j.gloplacha.2014.11.013 Haldorsen S, Heim M. 1999. An Arctic groundwater system and its dependence upon climatic change: an example from Svalbard. Permafrost and Periglacial Processes, 10(2): 137–149. doi: 10.1002/(SICI)1099-1530(199904/06)10:2<137::AID-PPP316>3.0.CO;2-# Hay A E. 1984. Remote acoustic imaging of the plume from a submarine spring in an Arctic fjord. Science, 225(4667): 1154–1156. doi: 10.1126/science.225.4667.1154 Hodson A J, Nowak A, Redeker K R, et al. 2019. Seasonal dynamics of methane and carbon dioxide evasion from an open system pingo: Lagoon pingo, Svalbard. Frontiers in Earth Science, 7: 30. doi: 10.3389/feart.2019.00030 Hop H, Wiencke C. 2019. The ecosystem of Kongsfjorden, Svalbard. In: The Ecosystem of Kongsfjorden, Svalbard. Cham: Springer, 1–20 Hwang D W, Kim G, Lee W C, et al. 2010. The role of submarine groundwater discharge (SGD) in nutrient budgets of Gamak Bay, a shellfish farming bay, in Korea. Journal of Sea Research, 64(3): 224–230. doi: 10.1016/j.seares.2010.02.006 Hwang D W, Kim G, Lee Y W, et al. 2005. Estimating submarine inputs of groundwater and nutrients to a coastal bay using radium isotopes. Marine Chemistry, 96(1–2): 61–71. doi: 10.1016/j.marchem.2004.11.002 Jacques J M St, Sauchyn D J. 2009. Increasing winter baseflow and mean annual streamflow from possible permafrost thawing in the Northwest Territories, Canada. Geophysical Research Letters, 36(1): L01401. doi: 10.1029/2008GL035822 Jickells T D. 1998. Nutrient biogeochemistry of the coastal zone. Science, 281(5374): 217–222. doi: 10.1126/science.281.5374.217 Kim B K, Joo H M, Jung J, et al. 2020. In situ rates of carbon and nitrogen uptake by phytoplankton and the contribution of picophytoplankton in Kongsfjorden, Svalbard. Water, 12(10): 2903. doi: 10.3390/w12102903 Kim G, Kim J S, Hwang D W. 2011. Submarine groundwater discharge from oceanic islands standing in oligotrophic oceans: Implications for global biological production and organic carbon fluxes. Limnology and Oceanography, 56(2): 673–682. doi: 10.4319/lo.2011.56.2.0673 Kim J H, Ryu J S, Hong W L, et al. 2022. Assessing the impact of freshwater discharge on the fluid chemistry in the Svalbard fjords. Science of the Total Environment, 835: 155516. doi: 10.1016/j.scitotenv.2022.155516 Kim G, Ryu J W, Yang H S, et al. 2005. Submarine groundwater discharge (SGD) into the Yellow Sea revealed by 228Ra and 226Ra isotopes: Implications for global silicate fluxes. Earth and Planetary Science Letters, 237(1-2): 156–166. doi: 10.1016/j.jpgl.2005.06.011 Kipp L E, Charette M A, Moore W S, et al. 2018. Increased fluxes of shelf-derived materials to the central Arctic Ocean. Science Advances, 4(1): eaao1302. doi: 10.1126/sciadv.aao1302 Knee K L, Paytan A. 2011. Submarine groundwater discharge: a source of nutrients, metals, and pollutants to the Coastal Ocean. In: Wolanski E, McLusky D, eds. Treatise on Estuarine and Coastal Science. Amsterdam: Academic Press, 4: 205–233 Kuliński K, Kędra M, Legeżyńska J, et al. 2014. Particulate organic matter sinks and sources in high Arctic fjord. Journal of Marine Systems, 139: 27–37. doi: 10.1016/j.jmarsys.2014.04.018 Kwon E Y, Kim G, Primeau F, et al. 2014. Global estimate of submarine groundwater discharge based on an observationally constrained radium isotope model. Geophysical Research Letters, 41(23): 8438–8444. doi: 10.1002/2014GL061574 Lecher A L. 2015. From the land to the sea: Impacts of submarine groundwater discharge on the coastal ocean of California and Alaska [dissertation]. Santa Cruz: University of California Lecher A L. 2017. Groundwater discharge in the Arctic: A review of studies and implications for biogeochemistry. Hydrology, 4(3): 41. doi: 10.3390/hydrology4030041 Lecher A L, Chien C T, Paytan A. 2016a. Submarine groundwater discharge as a source of nutrients to the North Pacific and Arctic coastal ocean. Marine Chemistry, 186: 167–177. doi: 10.1016/j.marchem.2016.09.008 Lecher A L, Kessler J, Sparrow K, et al. 2016b. Methane transport through submarine groundwater discharge to the North Pacific and Arctic Ocean at two Alaskan sites. Limnology and Oceanography, 61(S1): S344–S355. doi: 10.1002/lno.10118 Lee Y W, Kim G, Lim W A, et al. 2010. A relationship between submarine groundwater borne nutrients traced by Ra isotopes and the intensity of dinoflagellate red-tides occurring in the southern sea of Korea. Limnology and Oceanography, 55(1): 1–10. doi: 10.4319/lo.2010.55.1.0001 Lewis K M, Van Dijken G L, Arrigo K R. 2020. Changes in phytoplankton concentration now drive increased Arctic Ocean primary production. Science, 369(6500): 198–202. doi: 10.1126/science.aay8380 Linhoff B S, Charette M A, Nienow P W, et al. 2017. Utility of 222Rn as a passive tracer of subglacial distributed system drainage. Earth and Planetary Science Letters, 462: 180–188. doi: 10.1016/j.jpgl.2016.12.039 Linhoff B S, Charette M A, Wadham J. 2020. Rapid mineral surface weathering beneath the Greenland Ice Sheet shown by radium and uranium isotopes. Chemical Geology, 547: 119663. doi: 10.1016/j.chemgeo.2020.119663 Liu Jian’an, Du Jinzhou, Yi Lixin. 2017. Ra tracer-based study of submarine groundwater discharge and associated nutrient fluxes into the Bohai Sea, China: A highly human-affected marginal sea. Journal of Geophysical Research: Oceans, 122(11): 8646–8660. doi: 10.1002/2017jc013095 Liu Jian’an, Du Jinzhou, Yu Xueqing. 2021. Submarine groundwater discharge enhances primary productivity in the Yellow Sea, China: Insight from the separation of fresh and recirculated components. Geoscience Frontiers, 12(6): 101204. doi: 10.1016/j.gsf.2021.101204 Liu Sumei, Hong G H, Zhang Jing, et al. 2009. Nutrient budgets for large Chinese estuaries. Biogeosciences, 6(10): 2245–2263. doi: 10.5194/bg-6-2245-2009 Liu Jian’an, Liu Dongyan, Du Jinzhou. 2022. Radium-traced nutrient outwelling from the Subei Shoal to the Yellow Sea: Fluxes and environmental implication. Acta Oceanologica Sinica, 41(6): 12–21. doi: 10.1007/s13131-021-1930-z Luo Xin, Jiao Jiu Jimmy. 2016. Submarine groundwater discharge and nutrient loadings in Tolo Harbor, Hong Kong using multiple geotracer-based models, and their implications of red tide outbreaks. Water Research, 102: 11–31. doi: 10.1016/j.watres.2016.06.017 Luo Xin, Jiao Jiu Jimmy, Moore W S, et al. 2014. Submarine groundwater discharge estimation in an urbanized embayment in Hong Kong via short-lived radium isotopes and its implication of nutrient loadings and primary production. Marine Pollution Bulletin, 82(1–2): 144–154. doi: 10.1016/j.marpolbul.2014.03.005 McCoy C, Viso R, Peterson R N, et al. 2011. Radon as an indicator of limited cross-shelf mixing of submarine groundwater discharge along an open ocean beach in the South Atlantic Bight during observed hypoxia. Continental Shelf Research, 31(12): 1306–1317. doi: 10.1016/j.csr.2011.05.009 Michael H A, Mulligan A E, Harvey C F. 2005. Seasonal oscillations in water exchange between aquifers and the coastal ocean. Nature, 436(7054): 1145–1148. doi: 10.1038/nature03935 Moore W S. 1996. Large groundwater inputs to coastal waters revealed by 226Ra enrichments. Nature, 380(6575): 612–614. doi: 10.1038/380612a0 Moore W S. 2010. The effect of submarine groundwater discharge on the ocean. Annual Review of Marine Science, 2(1): 59–88. doi: 10.1146/annurev-marine-120308-081019 Moore W S, Arnold R. 1996. Measurement of 223Ra and 224Ra in coastal waters using a delayed coincidence counter. Journal of Geophysical Research:Oceans, 101(C1): 1321–1329. doi: 10.1029/95JC03139 Moore W S, Blanton J O, Joye S B. 2006. Estimates of flushing times, submarine groundwater discharge, and nutrient fluxes to Okatee Estuary, South Carolina. Journal of Geophysical Research: Oceans, 111(C9): C09006. doi: 10.1029/2005JC003041 Morison J, Kwok R, Peralta-Ferriz C, et al. 2012. Changing Arctic Ocean freshwater pathways. Nature, 481(7379): 66–70. doi: 10.1038/nature10705 Neilson B T, Cardenas M B, O'Connor M T, et al. 2018. Groundwater flow and exchange across the land surface explain carbon export patterns in continuous permafrost watersheds. Geophysical Research Letters, 45(15): 7596–7605. doi: 10.1029/2018gl078140 Oehler T, Eiche E, Putra D, et al. 2018. Seasonal variability of land-ocean groundwater nutrient fluxes from a tropical karstic region (southern Java, Indonesia). Journal of Hydrology, 565: 662–671. doi: 10.1016/j.jhydrol.2018.08.077 Olichwer T, Tarka R, Modelska M. 2013. Chemical composition of groundwaters in the Hornsund region, southern Spitsbergen. Hydrology Research, 44(1): 117–130. doi: 10.2166/nh.2012.075 Peng Tong, Zhu Zhuoyi, Du Jinzhou, et al. 2021. Effects of nutrient-rich submarine groundwater discharge on marine aquaculture: A case in Lianjiang, East China Sea. Science of the Total Environment, 786: 147388. doi: 10.1016/j.scitotenv.2021.147388 Peral M, Austin W E N, Noormets R. 2022. Identification of Atlantic water inflow on the north Svalbard shelf during the Holocene. Journal of Quaternary Science, 37(1): 86–99. doi: 10.1002/jqs.3374 Peterson B J, Holmes R M, McClelland J W, et al. 2002. Increasing river discharge to the Arctic Ocean. Science, 298(5601): 2171–2173. doi: 10.1126/science.1077445 Piquet A M T, Van de Poll W H, Visser R J W, et al. 2014. Springtime phytoplankton dynamics in the Arctic Krossfjorden and Kongsfjorden (Spitsbergen) as a function of glacier proximity. Biogeosciences, 11(8): 2263–2279. doi: 10.5194/bgd-10-15519-2013 Polyakov I V, Walsh J E, Kwok R. 2012. Recent changes of Arctic multiyear sea ice coverage and the likely causes. Bulletin of the American Meteorological Society, 93(2): 145–151. doi: 10.1175/BAMS-D-11-00070.1 Rabe B, Karcher M, Kauker F, et al. 2014. Arctic Ocean basin liquid freshwater storage trend 1992–2012. Geophysical Research Letters, 41(3): 961–968. doi: 10.1002/2013GL058121 Rodellas V, Garcia-Orellana J, Masqué P, et al. 2015. Submarine groundwater discharge as a major source of nutrients to the Mediterranean Sea. Proceedings of the National Academy of Sciences of the United States of America, 112(13): 3926–3930. doi: 10.1073/pnas.1419049112 Rosén P O, Andersson P S, Alling V, et al. 2015. Ice export from the Laptev and East Siberian Sea derived from δ18O values. Journal of Geophysical Research: Oceans, 120(9): 5997–6007. doi: 10.1002/2015JC010866 Sadat-Noori M, Santos I R, Sanders C J, et al. 2015. Groundwater discharge into an estuary using spatially distributed radon time series and radium isotopes. Journal of Hydrology, 528: 703–719. doi: 10.1016/j.jhydrol.2015.06.056 Sanford L P, Boicourt W C, Rives S R. 1992. Model for estimating tidal flushing of small embayments. Journal of Waterway, Port, Coastal, and Ocean Engineering, 118(6): 635–654. Santos I R, Chen Xiaogang, Lecher A L, et al. 2021. Submarine groundwater discharge impacts on coastal nutrient biogeochemistry. Nature Reviews Earth & Environment, 2(5): 307–323. doi: 10.1038/s43017-021-00152-0 Santos I R, Eyre B D, Huettel M. 2012. The driving forces of porewater and groundwater flow in permeable coastal sediments: A review. Estuarine, Coastal and Shelf Science, 98: 1–15. Semenov P, Portnov A, Krylov A, et al. 2020. Geochemical evidence for seabed fluid flow linked to the subsea permafrost outer border in the South Kara Sea. Geochemistry, 80(3): 125509. doi: 10.1016/j.chemer.2019.04.005 Slomp C P, Van Cappellen P. 2004. Nutrient inputs to the coastal ocean through submarine groundwater discharge: controls and potential impact. Journal of Hydrology, 295(1-4): 64–86. doi: 10.1016/j.jhydrol.2004.02.018 Smith L C, Sheng Yongwei, MacDonald G M. 2007. A first pan-Arctic assessment of the influence of glaciation, permafrost, topography and peatlands on northern hemisphere lake distribution. Permafrost and Periglacial Processes, 18(2): 201–208. doi: 10.1002/ppp.581 Stewart K J, Grogan P, Coxson D S, et al. 2014. Topography as a key factor driving atmospheric nitrogen exchanges in arctic terrestrial ecosystems. Soil Biology and Biochemistry, 70: 96–112. doi: 10.1016/j.soilbio.2013.12.005 Su Ni, Du Jinzhou, Moore W S, et al. 2011. An examination of groundwater discharge and the associated nutrient fluxes into the estuaries of eastern Hainan Island, China using 226Ra. Science of the Total Environment, 409(19): 3909–3918. doi: 10.1016/j.scitotenv.2011.06.017 Swarzenski P W. 2007. U/Th series radionuclides as coastal groundwater tracers. Chemical Reviews, 107(2): 663–674. doi: 10.1021/cr0503761 Taniguchi M, Burnett W C, Smith C F, et al. 2003. Spatial and temporal distributions of submarine groundwater discharge rates obtained from various types of seepage meters at a site in the Northeastern Gulf of Mexico. Biogeochemistry, 66(1-2): 35–53. doi: 10.1023/B:BIOG.0000006090.25949.8d Terhaar J, Lauerwald R, Regnier P, et al. 2021. Around one third of current Arctic Ocean primary production sustained by rivers and coastal erosion. Nature Communications, 12(1): 169. doi: 10.1038/s41467-020-20470-z Torsvik T, Albretsen J, Sundfjord A, et al. 2019. Impact of tidewater glacier retreat on the fjord system: Modeling present and future circulation in Kongsfjorden, Svalbard. Estuarine, Coastal and Shelf Science, 220: 152–165. Vonk J E, Sánchez-García L, Van Dongen B E, et al. 2012. Activation of old carbon by erosion of coastal and subsea permafrost in Arctic Siberia. Nature, 489(7414): 137–140. doi: 10.1038/nature11392 Wales N A, Gomez-Velez J D, Newman B D, et al. 2020. Understanding the relative importance of vertical and horizontal flow in ice-wedge polygons. Hydrology and Earth System Sciences, 24(3): 1109–1129. doi: 10.5194/hess-24-1109-2020 Walvoord M A, Voss C I, Ebel B A, et al. 2019. Development of perennial thaw zones in boreal hillslopes enhances potential mobilization of permafrost carbon. Environmental Research Letters, 14(1): 015003. doi: 10.1088/1748-9326/aaf0cc Wang Xuejing, Li Hailong, Yang Jinzhong, et al. 2017. Nutrient inputs through submarine groundwater discharge in an embayment: A radon investigation in Daya Bay, China. Journal of Hydrology, 551: 784–792. doi: 10.1016/j.jhydrol.2017.02.036 Wang Xuejing, Li Hailong, Zheng Chunmiao, et al. 2018. Submarine groundwater discharge as an important nutrient source influencing nutrient structure in coastal water of Daya Bay, China. Geochimica et Cosmochimica Acta, 225: 52–65. doi: 10.1016/j.gca.2018.01.029 Whalen S C, Cornwell J C. 1985. Nitrogen, phosphorus, and organic carbon cycling in an Arctic Lake. Canadian Journal of Fisheries and Aquatic Sciences, 42(4): 797–808. doi: 10.1139/f85-102 Yang Yichao, Ren Jingling, Zhu Zhuoyi. 2022. Distributions and Influencing Factors of Dissolved Manganese in Kongsfjorden and Ny-Ålesund, Svalbard. ACS Earth and Space Chemistry, 6(5): 1259–1268. doi: 10.1021/acsearthspacechem.1c00388 Yoshikawa K, Harada K. 1995. Observations on nearshore pingo growth, Adventdalen, Spitsbergen. Permafrost and Periglacial Processes, 6(4): 361–372. doi: 10.1002/ppp.3430060407 Zhang Jinlun, Spitz Y H, Steele M, et al. 2010. Modeling the impact of declining sea ice on the Arctic marine planktonic ecosystem. Journal of Geophysical Research:Oceans, 115(C10): C10015. doi: 10.1029/2009JC005387 Zhu Zhuoyi. 2022. Clarifying the fate of dissolved organic carbon in turbid glacier meltwater rivers in Svalbard via a series of incubations. Biogeochemistry, 159(3): 337–352. doi: 10.1007/s10533-022-00931-x Zhu Zhuoyi, Wu Ying, Liu Sumei, et al. 2016. Organic carbon flux and particulate organic matter composition in Arctic valley glaciers: examples from the Bayelva River and adjacent Kongsfjorden. Biogeosciences, 13(4): 975–987. doi: 10.5194/bg-13-975-2016
计量
- 文章访问数: 150
- HTML全文浏览量: 66
- 被引次数: 0