The significant role of submarine groundwater discharge in an Arctic fjord nutrient budget

Xueqing Yu Jianan Liu Zhuoyi Zhu Xiaogang Chen Tong Peng Jinzhou Du

Xueqing Yu, Jianan Liu, Zhuoyi Zhu, Xiaogang Chen, Tong Peng, Jinzhou Du. The significant role of submarine groundwater discharge in an Arctic fjord nutrient budget[J]. Acta Oceanologica Sinica. doi: 10.1007/s13131-023-2282-7
Citation: Xueqing Yu, Jianan Liu, Zhuoyi Zhu, Xiaogang Chen, Tong Peng, Jinzhou Du. The significant role of submarine groundwater discharge in an Arctic fjord nutrient budget[J]. Acta Oceanologica Sinica. doi: 10.1007/s13131-023-2282-7

doi: 10.1007/s13131-023-2282-7

The significant role of submarine groundwater discharge in an Arctic fjord nutrient budget

Funds: The National Natural Science Foundation of China under contract Nos 41976040, 41676188, 42106043 and 42006152; Innovation Base for estuarine and coastal water security 2.0 from the Ministry of Science and Technology of P.R. China under contract No BP0820020.
More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  Locations of the Kongsfjorden and sampling station during 2017. Blue circles, orange diamonds and red triangle represent surface water, river water and groundwater, respectively. Blue arrows indicate ocean currents of Atlantic Water (AW) and Arctic Coastal Water (ACW) (Zhu, 2022).

    Figure  2.  Vertical distributions of salinity, temperature (℃), and density (kg/m) at K2, K3, K5 in Kongsfjorden

    Figure  3.  The distributions of (a) 226Ra and (b) 228Ra activities (Bq/m3) in the different sources of Kongsfjorden.

    Figure  4.  The distributions of DIN, DIP and DSi concentrations (μmol/L) in the different water sources of the Kongsfjorden.

    Figure  5.  Schematic diagram for DIN and DIP budgets (all in mol/d) in the upper Kongsfjorden during our sampling period (some data from Piquet et al., 2014; Stewart et al., 2014; Zhu et al., 2016; Chen et al., 2018; Hop and Wiencke, 2019; Kim et al., 2020).

    Figure  6.  (a) Locations of SGD flux study cases, as viewed from the geographic North Pole. (b) Distribution of SGD rates (cm/d) for each study site in the Arctic Ocean. The numbers correspond to the study cases in (a). (c) The trend of net primary production in the Arctic Ocean from 2000-2017 that modified from Lewis et al. (2020). (d) The distribution of SGD rates (cm/d) in the Arctic Ocean from 1983-2017. The SGD rate data from Connolly et al., 2020; Cornwell, 1985; Dabrowski et al., 2020; Deming et al., 1992; Dimova et al., 2015; Dzyuba and Zektser, 2013; Hay, 1984; Lecher et al., 2016a; Lecher, 2017; Linhoff et al., 2017; Neilson et al., 2018; Wales et al., 2020; Whalen and Charkin, 1985.

    Figure  7.  The N/P ratios in SGD, river water, floating ice and surface seawater in the Kongsfjorden

    Table  1.   Concentrations of 226Ra ,228Ra, nutrient and other parameters in all samples collected in the Kongsfjorden

    Station Latitude/°N Longitude/°E Temp/℃ Salinity pH DO/
    mgžL−1
    228Ra/
    dpmž100L−1
    226Ra/
    dpmž100L−1
    DIN/
    μmolžL−1
    DIP/
    μmolžL−1
    DSi/
    μmolžL−1
    Seawater
    K2 78.9687 11.8292 3.7 31.7 8.3 12.9 2.4±0.37 2.2±0.32 5.17 0.234 0.591
    K3 78.9518 11.9727 6.6 30.8 8.5 13.1 3.1±0.45 2.5±0.30 7.58 0.073 1.50
    K4 78.9161 12.3308 6.7 31.3 8.5 13.0 2.3±0.32 2.9±0.25
    K5 78.9705 12.3811 7.3 32.3 8.4 12.7 2.0±0.25 2.4±0.22 7.68 0.103 1.99
    K6 78.9592 12.3026 6.5 32.2 8.4 12.8 1.7±0.27 2.3±0.22
    K7 78.9303 12.2014 6.5 31.5 8.5 13.4 3.1±0.25 3.3±0.20
    K8 78.9936 12.3300 6.5 30.9 8.5 13.3 2.4±0.25 2.4±0.18
    K9 78.9302 12.4000 4.9 31.4 8.3 12.7 2.3±0.40 2.8±0.32
    K10 78.9405 12.1013 5.4 31.1 8.6 12.6 1.9±0.30 2.1±0.20
    Groundwater
    GW1 78.9300 11.9307 4.0 0.0 8.1 0.2 8.6±0.30 6.1±0.25 63.70 0.369 48.8
    GW2 78.9502 11.9008 3.5 16.5 8.3 12.5 19.2±0.37 8.6±0.28 5.76 0.234 8.02
    River water
    RW 78.9350 11.9203 1.9 0.2 8.6 13.0 3.5±0.43 2.7±0.28 11.8 0.330 10.5
    Open sea
    K1 78.9899 11.6520 4.0 33.2 8.7 13.3 1.5±0.48 2.0±0.28 4.53 0.205 0.758
    下载: 导出CSV
  • Arrigo K R, van Dijken G L. 2011. Secular trends in Arctic Ocean net primary production. Journal of Geophysical Research: Oceans, 116(C9): C09011. doi: 10.1029/2011JC007151
    Baléo J N, Humeau P, Le Cloirec P. 2001. Numerical and experimental hydrodynamic studies of a lagoon pilot. Water Research, 35(9): 2268–2276. doi: 10.1016/S0043-1354(00)00502-9
    Berelson W M, Heggie D, Longmore A, et al. 1998. Benthic nutrient recycling in Port Phillip Bay, Australia. Estuarine, Coastal and Shelf Science, 46(6): 917–934.
    Bridgestock L, Nathan J, Hsieh Y T, et al. 2021a. Assessing the utility of barium isotopes to trace Eurasian riverine freshwater inputs to the Arctic Ocean. Marine Chemistry, 236: 104029. doi: 10.1016/j.marchem.2021.104029
    Bridgestock L, Nathan J, Paver R, et al. 2021b. Estuarine processes modify the isotope composition of dissolved riverine barium fluxes to the ocean. Chemical Geology, 579: 120340. doi: 10.1016/j.chemgeo.2021.120340
    Bullock E J, Kipp L, Moore W, et al. 2022. Radium inputs into the Arctic Ocean from rivers: A basin-wide estimate. Journal of Geophysical Research: Oceans, 127(9): e2022JC018964. doi: 10.1029/2022JC018964
    Burnett W C, Bokuniewicz H, Huettel M, et al. 2003. Groundwater and pore water inputs to the coastal zone. Biogeochemistry, 66(1): 3–33. doi: 10.1023/B:BIOG.0000006066.21240.53
    Carmack E C, Yamamoto-Kawai M, Haine T W N, et al. 2016. Freshwater and its role in the Arctic Marine System: Sources, disposition, storage, export, and physical and biogeochemical consequences in the Arctic and global oceans. Journal of Geophysical Research: Biogeosciences, 121(3): 675–717. doi: 10.1002/2015JG003140
    Cerdà-Domènech M, Rodellas V, Folch A, et al. 2017. Constraining the temporal variations of Ra isotopes and Rn in the groundwater end-member: Implications for derived SGD estimates. Science of the Total Environment, 595: 849–857. doi: 10.1016/j.scitotenv.2017.03.005
    Charette M A, Breier C F, Henderson P B, et al. 2013. Radium-based estimates of cesium isotope transport and total direct ocean discharges from the Fukushima Nuclear Power Plant accident. Biogeosciences, 10(3): 2159–2167. doi: 10.5194/bg-10-2159-2013
    Charkin A N, van der Loeff M R, Shakhova N E, et al. 2017. Discovery and characterization of submarine groundwater discharge in the Siberian Arctic seas: a case study in the Buor-Khaya Gulf, Laptev Sea. The Cryosphere, 11(5): 2305–2327. doi: 10.5194/tc-11-2305-2017
    Chen Meilian, Kim J H, Nam S I, et al. 2016. Production of fluorescent dissolved organic matter in Arctic Ocean sediments. Scientific Reports, 6(1): 39213. doi: 10.1038/srep39213
    Chen Xiaogang, Lao Yanling, Wang Jinlong, et al. 2018. Submarine groundwater-borne nutrients in a tropical bay (Maowei Sea, China) and their impacts on the oyster aquaculture. Geochemistry, Geophysics, Geosystems, 19(3): 932–951.
    Cho H M, Kim G. 2017. Large temporal changes in contributions of groundwater-borne nutrients to coastal waters off a volcanic island. Ocean Science Journal, 52(3): 337–344. doi: 10.1007/s12601-017-0033-4
    Collins M, Knutti R, Arblaster J, et al. 2013. Long-term climate change: projections, commitments and irreversibility. In: Climate Change 2013-The Physical Science Basis: Contribution of Working Group I to the fifth Assessment Report of the Intergovernmental Panel on Climate Change. New York, USA: Cambridge University Press, 1029–1136
    Connolly C T, Cardenas M B, Burkart G A, et al. 2020. Groundwater as a major source of dissolved organic matter to Arctic coastal waters. Nature Communications, 11(1): 1479. doi: 10.1038/s41467-020-15250-8
    Deming D, Sass J H, Lachenbruch A H, et al. 1992. Heat flow and subsurface temperature as evidence for basin-scale ground-water flow, North Slope of Alaska. GSA Bulletin, 104(5): 528–542. doi: 10.1130/0016-7606(1992)104<0528:HFASTA>2.3.CO;2
    Dimova N T, Burnett W C. 2011. Evaluation of groundwater discharge into small lakes based on the temporal distribution of radon-222. Limnology and Oceanography, 56(2): 486–494. doi: 10.4319/lo.2011.56.2.0486
    Dimova N T, Paytan A, Kessler J D, et al. 2015. Current magnitude and mechanisms of groundwater discharge in the Arctic: Case study from Alaska. Environmental Science & Technology, 49(20): 12036–12043. doi: 10.1021/acs.est.5b02215
    Duan Liangliang, Man Xiuling, Kurylyk B L, et al. 2017. Increasing winter baseflow in response to permafrost thaw and precipitation regime shifts in northeastern China. Water, 9(1): 25. doi: 10.3390/w9010025
    Dzyuba A V, Zektser I S. 2013. Variations in submarine groundwater runoff as a possible cause of decomposition of marine methane-hydrates in the Arctic. Water Resources, 40(1): 74–83. doi: 10.1134/S009780781301003x
    Frederick J M, Buffett B A. 2015. Effects of submarine groundwater discharge on the present-day extent of relict submarine permafrost and gas hydrate stability on the Beaufort Sea continental shelf. Journal of Geophysical Research: Earth Surface, 120(3): 417–432. doi: 10.1002/2014JF003349
    Garcia-Orellana J, Rodellas V, Tamborski J, et al. 2021. Radium isotopes as submarine groundwater discharge (SGD) tracers: Review and recommendations. Earth-Science Reviews, 220: 103681. doi: 10.1016/j.earscirev.2021.103681
    Geyer W R, Morris J T, Prahl F G, et al. 2000. Interaction between physical processes and ecosystem structure: A comparative approach. In: Hobbie J, ed. Estuarine Science: A Synthetic Approach to Research and Practice. Washington, DC: Island Press, 177–206
    Glibert P M, Mayorga E, Seitzinger S. 2008. Prorocentrum minimum tracks anthropogenic nitrogen and phosphorus inputs on a global basis: application of spatially explicit nutrient export models. Harmful Algae, 8(1): 33–38. doi: 10.1016/j.hal.2008.08.023
    Guimond J A, Mohammed A A, Walvoord M A, et al. 2022. Sea-level rise and warming mediate coastal groundwater discharge in the Arctic. Environmental Research Letters, 17(4): 045027. doi: 10.1088/1748-9326/ac6085
    Haine T W N, Curry B, Gerdes R, et al. 2015. Arctic freshwater export: Status, mechanisms, and prospects. Global and Planetary Change, 125: 13–35. doi: 10.1016/j.gloplacha.2014.11.013
    Haldorsen S, Heim M. 1999. An Arctic groundwater system and its dependence upon climatic change: an example from Svalbard. Permafrost and Periglacial Processes, 10(2): 137–149. doi: 10.1002/(SICI)1099-1530(199904/06)10:2<137::AID-PPP316>3.0.CO;2-#
    Hay A E. 1984. Remote acoustic imaging of the plume from a submarine spring in an Arctic fjord. Science, 225(4667): 1154–1156. doi: 10.1126/science.225.4667.1154
    Hodson A J, Nowak A, Redeker K R, et al. 2019. Seasonal dynamics of methane and carbon dioxide evasion from an open system pingo: Lagoon pingo, Svalbard. Frontiers in Earth Science, 7: 30. doi: 10.3389/feart.2019.00030
    Hop H, Wiencke C. 2019. The ecosystem of Kongsfjorden, Svalbard. In: The Ecosystem of Kongsfjorden, Svalbard. Cham: Springer, 1–20
    Hwang D W, Kim G, Lee W C, et al. 2010. The role of submarine groundwater discharge (SGD) in nutrient budgets of Gamak Bay, a shellfish farming bay, in Korea. Journal of Sea Research, 64(3): 224–230. doi: 10.1016/j.seares.2010.02.006
    Hwang D W, Kim G, Lee Y W, et al. 2005. Estimating submarine inputs of groundwater and nutrients to a coastal bay using radium isotopes. Marine Chemistry, 96(1–2): 61–71. doi: 10.1016/j.marchem.2004.11.002
    Jacques J M St, Sauchyn D J. 2009. Increasing winter baseflow and mean annual streamflow from possible permafrost thawing in the Northwest Territories, Canada. Geophysical Research Letters, 36(1): L01401. doi: 10.1029/2008GL035822
    Jickells T D. 1998. Nutrient biogeochemistry of the coastal zone. Science, 281(5374): 217–222. doi: 10.1126/science.281.5374.217
    Kim B K, Joo H M, Jung J, et al. 2020. In situ rates of carbon and nitrogen uptake by phytoplankton and the contribution of picophytoplankton in Kongsfjorden, Svalbard. Water, 12(10): 2903. doi: 10.3390/w12102903
    Kim G, Kim J S, Hwang D W. 2011. Submarine groundwater discharge from oceanic islands standing in oligotrophic oceans: Implications for global biological production and organic carbon fluxes. Limnology and Oceanography, 56(2): 673–682. doi: 10.4319/lo.2011.56.2.0673
    Kim J H, Ryu J S, Hong W L, et al. 2022. Assessing the impact of freshwater discharge on the fluid chemistry in the Svalbard fjords. Science of the Total Environment, 835: 155516. doi: 10.1016/j.scitotenv.2022.155516
    Kim G, Ryu J W, Yang H S, et al. 2005. Submarine groundwater discharge (SGD) into the Yellow Sea revealed by 228Ra and 226Ra isotopes: Implications for global silicate fluxes. Earth and Planetary Science Letters, 237(1-2): 156–166. doi: 10.1016/j.jpgl.2005.06.011
    Kipp L E, Charette M A, Moore W S, et al. 2018. Increased fluxes of shelf-derived materials to the central Arctic Ocean. Science Advances, 4(1): eaao1302. doi: 10.1126/sciadv.aao1302
    Knee K L, Paytan A. 2011. Submarine groundwater discharge: a source of nutrients, metals, and pollutants to the Coastal Ocean. In: Wolanski E, McLusky D, eds. Treatise on Estuarine and Coastal Science. Amsterdam: Academic Press, 4: 205–233
    Kuliński K, Kędra M, Legeżyńska J, et al. 2014. Particulate organic matter sinks and sources in high Arctic fjord. Journal of Marine Systems, 139: 27–37. doi: 10.1016/j.jmarsys.2014.04.018
    Kwon E Y, Kim G, Primeau F, et al. 2014. Global estimate of submarine groundwater discharge based on an observationally constrained radium isotope model. Geophysical Research Letters, 41(23): 8438–8444. doi: 10.1002/2014GL061574
    Lecher A L. 2015. From the land to the sea: Impacts of submarine groundwater discharge on the coastal ocean of California and Alaska [dissertation]. Santa Cruz: University of California
    Lecher A L. 2017. Groundwater discharge in the Arctic: A review of studies and implications for biogeochemistry. Hydrology, 4(3): 41. doi: 10.3390/hydrology4030041
    Lecher A L, Chien C T, Paytan A. 2016a. Submarine groundwater discharge as a source of nutrients to the North Pacific and Arctic coastal ocean. Marine Chemistry, 186: 167–177. doi: 10.1016/j.marchem.2016.09.008
    Lecher A L, Kessler J, Sparrow K, et al. 2016b. Methane transport through submarine groundwater discharge to the North Pacific and Arctic Ocean at two Alaskan sites. Limnology and Oceanography, 61(S1): S344–S355. doi: 10.1002/lno.10118
    Lee Y W, Kim G, Lim W A, et al. 2010. A relationship between submarine groundwater borne nutrients traced by Ra isotopes and the intensity of dinoflagellate red-tides occurring in the southern sea of Korea. Limnology and Oceanography, 55(1): 1–10. doi: 10.4319/lo.2010.55.1.0001
    Lewis K M, Van Dijken G L, Arrigo K R. 2020. Changes in phytoplankton concentration now drive increased Arctic Ocean primary production. Science, 369(6500): 198–202. doi: 10.1126/science.aay8380
    Linhoff B S, Charette M A, Nienow P W, et al. 2017. Utility of 222Rn as a passive tracer of subglacial distributed system drainage. Earth and Planetary Science Letters, 462: 180–188. doi: 10.1016/j.jpgl.2016.12.039
    Linhoff B S, Charette M A, Wadham J. 2020. Rapid mineral surface weathering beneath the Greenland Ice Sheet shown by radium and uranium isotopes. Chemical Geology, 547: 119663. doi: 10.1016/j.chemgeo.2020.119663
    Liu Jian’an, Du Jinzhou, Yi Lixin. 2017. Ra tracer-based study of submarine groundwater discharge and associated nutrient fluxes into the Bohai Sea, China: A highly human-affected marginal sea. Journal of Geophysical Research: Oceans, 122(11): 8646–8660. doi: 10.1002/2017jc013095
    Liu Jian’an, Du Jinzhou, Yu Xueqing. 2021. Submarine groundwater discharge enhances primary productivity in the Yellow Sea, China: Insight from the separation of fresh and recirculated components. Geoscience Frontiers, 12(6): 101204. doi: 10.1016/j.gsf.2021.101204
    Liu Sumei, Hong G H, Zhang Jing, et al. 2009. Nutrient budgets for large Chinese estuaries. Biogeosciences, 6(10): 2245–2263. doi: 10.5194/bg-6-2245-2009
    Liu Jian’an, Liu Dongyan, Du Jinzhou. 2022. Radium-traced nutrient outwelling from the Subei Shoal to the Yellow Sea: Fluxes and environmental implication. Acta Oceanologica Sinica, 41(6): 12–21. doi: 10.1007/s13131-021-1930-z
    Luo Xin, Jiao Jiu Jimmy. 2016. Submarine groundwater discharge and nutrient loadings in Tolo Harbor, Hong Kong using multiple geotracer-based models, and their implications of red tide outbreaks. Water Research, 102: 11–31. doi: 10.1016/j.watres.2016.06.017
    Luo Xin, Jiao Jiu Jimmy, Moore W S, et al. 2014. Submarine groundwater discharge estimation in an urbanized embayment in Hong Kong via short-lived radium isotopes and its implication of nutrient loadings and primary production. Marine Pollution Bulletin, 82(1–2): 144–154. doi: 10.1016/j.marpolbul.2014.03.005
    McCoy C, Viso R, Peterson R N, et al. 2011. Radon as an indicator of limited cross-shelf mixing of submarine groundwater discharge along an open ocean beach in the South Atlantic Bight during observed hypoxia. Continental Shelf Research, 31(12): 1306–1317. doi: 10.1016/j.csr.2011.05.009
    Michael H A, Mulligan A E, Harvey C F. 2005. Seasonal oscillations in water exchange between aquifers and the coastal ocean. Nature, 436(7054): 1145–1148. doi: 10.1038/nature03935
    Moore W S. 1996. Large groundwater inputs to coastal waters revealed by 226Ra enrichments. Nature, 380(6575): 612–614. doi: 10.1038/380612a0
    Moore W S. 2010. The effect of submarine groundwater discharge on the ocean. Annual Review of Marine Science, 2(1): 59–88. doi: 10.1146/annurev-marine-120308-081019
    Moore W S, Arnold R. 1996. Measurement of 223Ra and 224Ra in coastal waters using a delayed coincidence counter. Journal of Geophysical Research:Oceans, 101(C1): 1321–1329. doi: 10.1029/95JC03139
    Moore W S, Blanton J O, Joye S B. 2006. Estimates of flushing times, submarine groundwater discharge, and nutrient fluxes to Okatee Estuary, South Carolina. Journal of Geophysical Research: Oceans, 111(C9): C09006. doi: 10.1029/2005JC003041
    Morison J, Kwok R, Peralta-Ferriz C, et al. 2012. Changing Arctic Ocean freshwater pathways. Nature, 481(7379): 66–70. doi: 10.1038/nature10705
    Neilson B T, Cardenas M B, O'Connor M T, et al. 2018. Groundwater flow and exchange across the land surface explain carbon export patterns in continuous permafrost watersheds. Geophysical Research Letters, 45(15): 7596–7605. doi: 10.1029/2018gl078140
    Oehler T, Eiche E, Putra D, et al. 2018. Seasonal variability of land-ocean groundwater nutrient fluxes from a tropical karstic region (southern Java, Indonesia). Journal of Hydrology, 565: 662–671. doi: 10.1016/j.jhydrol.2018.08.077
    Olichwer T, Tarka R, Modelska M. 2013. Chemical composition of groundwaters in the Hornsund region, southern Spitsbergen. Hydrology Research, 44(1): 117–130. doi: 10.2166/nh.2012.075
    Peng Tong, Zhu Zhuoyi, Du Jinzhou, et al. 2021. Effects of nutrient-rich submarine groundwater discharge on marine aquaculture: A case in Lianjiang, East China Sea. Science of the Total Environment, 786: 147388. doi: 10.1016/j.scitotenv.2021.147388
    Peral M, Austin W E N, Noormets R. 2022. Identification of Atlantic water inflow on the north Svalbard shelf during the Holocene. Journal of Quaternary Science, 37(1): 86–99. doi: 10.1002/jqs.3374
    Peterson B J, Holmes R M, McClelland J W, et al. 2002. Increasing river discharge to the Arctic Ocean. Science, 298(5601): 2171–2173. doi: 10.1126/science.1077445
    Piquet A M T, Van de Poll W H, Visser R J W, et al. 2014. Springtime phytoplankton dynamics in the Arctic Krossfjorden and Kongsfjorden (Spitsbergen) as a function of glacier proximity. Biogeosciences, 11(8): 2263–2279. doi: 10.5194/bgd-10-15519-2013
    Polyakov I V, Walsh J E, Kwok R. 2012. Recent changes of Arctic multiyear sea ice coverage and the likely causes. Bulletin of the American Meteorological Society, 93(2): 145–151. doi: 10.1175/BAMS-D-11-00070.1
    Rabe B, Karcher M, Kauker F, et al. 2014. Arctic Ocean basin liquid freshwater storage trend 1992–2012. Geophysical Research Letters, 41(3): 961–968. doi: 10.1002/2013GL058121
    Rodellas V, Garcia-Orellana J, Masqué P, et al. 2015. Submarine groundwater discharge as a major source of nutrients to the Mediterranean Sea. Proceedings of the National Academy of Sciences of the United States of America, 112(13): 3926–3930. doi: 10.1073/pnas.1419049112
    Rosén P O, Andersson P S, Alling V, et al. 2015. Ice export from the Laptev and East Siberian Sea derived from δ18O values. Journal of Geophysical Research: Oceans, 120(9): 5997–6007. doi: 10.1002/2015JC010866
    Sadat-Noori M, Santos I R, Sanders C J, et al. 2015. Groundwater discharge into an estuary using spatially distributed radon time series and radium isotopes. Journal of Hydrology, 528: 703–719. doi: 10.1016/j.jhydrol.2015.06.056
    Sanford L P, Boicourt W C, Rives S R. 1992. Model for estimating tidal flushing of small embayments. Journal of Waterway, Port, Coastal, and Ocean Engineering, 118(6): 635–654.
    Santos I R, Chen Xiaogang, Lecher A L, et al. 2021. Submarine groundwater discharge impacts on coastal nutrient biogeochemistry. Nature Reviews Earth & Environment, 2(5): 307–323. doi: 10.1038/s43017-021-00152-0
    Santos I R, Eyre B D, Huettel M. 2012. The driving forces of porewater and groundwater flow in permeable coastal sediments: A review. Estuarine, Coastal and Shelf Science, 98: 1–15.
    Semenov P, Portnov A, Krylov A, et al. 2020. Geochemical evidence for seabed fluid flow linked to the subsea permafrost outer border in the South Kara Sea. Geochemistry, 80(3): 125509. doi: 10.1016/j.chemer.2019.04.005
    Slomp C P, Van Cappellen P. 2004. Nutrient inputs to the coastal ocean through submarine groundwater discharge: controls and potential impact. Journal of Hydrology, 295(1-4): 64–86. doi: 10.1016/j.jhydrol.2004.02.018
    Smith L C, Sheng Yongwei, MacDonald G M. 2007. A first pan-Arctic assessment of the influence of glaciation, permafrost, topography and peatlands on northern hemisphere lake distribution. Permafrost and Periglacial Processes, 18(2): 201–208. doi: 10.1002/ppp.581
    Stewart K J, Grogan P, Coxson D S, et al. 2014. Topography as a key factor driving atmospheric nitrogen exchanges in arctic terrestrial ecosystems. Soil Biology and Biochemistry, 70: 96–112. doi: 10.1016/j.soilbio.2013.12.005
    Su Ni, Du Jinzhou, Moore W S, et al. 2011. An examination of groundwater discharge and the associated nutrient fluxes into the estuaries of eastern Hainan Island, China using 226Ra. Science of the Total Environment, 409(19): 3909–3918. doi: 10.1016/j.scitotenv.2011.06.017
    Swarzenski P W. 2007. U/Th series radionuclides as coastal groundwater tracers. Chemical Reviews, 107(2): 663–674. doi: 10.1021/cr0503761
    Taniguchi M, Burnett W C, Smith C F, et al. 2003. Spatial and temporal distributions of submarine groundwater discharge rates obtained from various types of seepage meters at a site in the Northeastern Gulf of Mexico. Biogeochemistry, 66(1-2): 35–53. doi: 10.1023/B:BIOG.0000006090.25949.8d
    Terhaar J, Lauerwald R, Regnier P, et al. 2021. Around one third of current Arctic Ocean primary production sustained by rivers and coastal erosion. Nature Communications, 12(1): 169. doi: 10.1038/s41467-020-20470-z
    Torsvik T, Albretsen J, Sundfjord A, et al. 2019. Impact of tidewater glacier retreat on the fjord system: Modeling present and future circulation in Kongsfjorden, Svalbard. Estuarine, Coastal and Shelf Science, 220: 152–165.
    Vonk J E, Sánchez-García L, Van Dongen B E, et al. 2012. Activation of old carbon by erosion of coastal and subsea permafrost in Arctic Siberia. Nature, 489(7414): 137–140. doi: 10.1038/nature11392
    Wales N A, Gomez-Velez J D, Newman B D, et al. 2020. Understanding the relative importance of vertical and horizontal flow in ice-wedge polygons. Hydrology and Earth System Sciences, 24(3): 1109–1129. doi: 10.5194/hess-24-1109-2020
    Walvoord M A, Voss C I, Ebel B A, et al. 2019. Development of perennial thaw zones in boreal hillslopes enhances potential mobilization of permafrost carbon. Environmental Research Letters, 14(1): 015003. doi: 10.1088/1748-9326/aaf0cc
    Wang Xuejing, Li Hailong, Yang Jinzhong, et al. 2017. Nutrient inputs through submarine groundwater discharge in an embayment: A radon investigation in Daya Bay, China. Journal of Hydrology, 551: 784–792. doi: 10.1016/j.jhydrol.2017.02.036
    Wang Xuejing, Li Hailong, Zheng Chunmiao, et al. 2018. Submarine groundwater discharge as an important nutrient source influencing nutrient structure in coastal water of Daya Bay, China. Geochimica et Cosmochimica Acta, 225: 52–65. doi: 10.1016/j.gca.2018.01.029
    Whalen S C, Cornwell J C. 1985. Nitrogen, phosphorus, and organic carbon cycling in an Arctic Lake. Canadian Journal of Fisheries and Aquatic Sciences, 42(4): 797–808. doi: 10.1139/f85-102
    Yang Yichao, Ren Jingling, Zhu Zhuoyi. 2022. Distributions and Influencing Factors of Dissolved Manganese in Kongsfjorden and Ny-Ålesund, Svalbard. ACS Earth and Space Chemistry, 6(5): 1259–1268. doi: 10.1021/acsearthspacechem.1c00388
    Yoshikawa K, Harada K. 1995. Observations on nearshore pingo growth, Adventdalen, Spitsbergen. Permafrost and Periglacial Processes, 6(4): 361–372. doi: 10.1002/ppp.3430060407
    Zhang Jinlun, Spitz Y H, Steele M, et al. 2010. Modeling the impact of declining sea ice on the Arctic marine planktonic ecosystem. Journal of Geophysical Research:Oceans, 115(C10): C10015. doi: 10.1029/2009JC005387
    Zhu Zhuoyi. 2022. Clarifying the fate of dissolved organic carbon in turbid glacier meltwater rivers in Svalbard via a series of incubations. Biogeochemistry, 159(3): 337–352. doi: 10.1007/s10533-022-00931-x
    Zhu Zhuoyi, Wu Ying, Liu Sumei, et al. 2016. Organic carbon flux and particulate organic matter composition in Arctic valley glaciers: examples from the Bayelva River and adjacent Kongsfjorden. Biogeosciences, 13(4): 975–987. doi: 10.5194/bg-13-975-2016
  • 加载中
计量
  • 文章访问数:  73
  • HTML全文浏览量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-13
  • 录用日期:  2023-12-07
  • 网络出版日期:  2024-03-11

目录

    /

    返回文章
    返回