Assessment of theoretical approaches to derivation of internal solitary wave parameters from multi-satellite images near the Dongsha Atoll of the South China Sea

Huarong Xie Qing Xu Quanan Zheng Xuejun Xiong Xiaomin Ye Yongcun Cheng

Huarong Xie, Qing Xu, Quanan Zheng, Xuejun Xiong, Xiaomin Ye, Yongcun Cheng. Assessment of theoretical approaches to derivation of internal solitary wave parameters from multi-satellite images near the Dongsha Atoll of the South China Sea[J]. Acta Oceanologica Sinica. doi: 10.1007/s13131-022-2015-3
Citation: Huarong Xie, Qing Xu, Quanan Zheng, Xuejun Xiong, Xiaomin Ye, Yongcun Cheng. Assessment of theoretical approaches to derivation of internal solitary wave parameters from multi-satellite images near the Dongsha Atoll of the South China Sea[J]. Acta Oceanologica Sinica. doi: 10.1007/s13131-022-2015-3

doi: 10.1007/s13131-022-2015-3

Assessment of theoretical approaches to derivation of internal solitary wave parameters from multi-satellite images near the Dongsha Atoll of the South China Sea

Funds: The National Key Project of Research and Development Plan of China under contract No. 2016YFC1401905; the National Natural Science Foundation of China under contract No. 41976163; the Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) under contract No. GML2019ZD0602; the Guangdong Special Fund Program for Marine Economy Development under contract No. GDNRC[2020]050.
More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  Satellite images of the internal solitary waves in the northern South China Sea. MODIS images were acquired on July 10 (a), July 11 (b), July 12 (e) and July 13, 2017 (g); CBERS-4 image (c) and GF-1 image (d) were acquired on July 12, 2017; Landsat-7 image (f) was acquired on July 13, 2017.

    Figure  2.  Location of the mooring station (yellow pentagram) and crest lines (color lines) of the leading ISWs extracted from satellite images in the northern South China Sea. Numbers 1 to 7 denote the ISWs on Images 1 to 7 in Table 1, respectively.

    Figure  3.  Vertical profiles of water temperature measured by the mooring CTD chain deployed near Dongsha Atoll in the northern South China Sea from July 10−13, 2017.

    Figure  4.  Comparisons of daily multi-scale ultra-high resolution sea surface temperature (MURSST), mooring observed temperature and Copernicus Marine Environment Monitoring Service (CMEMS) temperature at the mooring location during July 10−13, 2017.

    Figure  5.  A scatter plot of lg$\chi $ and characteristic half width of ISWs. Open and solid circles represent the data derived from this study and cited from previous studies, respectively.

    Figure  6.  Relation of the relative error (dA) of satellite estimated ISW amplitude to the bottom slope (dh). Data points represent the results of ISWs observed on the seven satellite images during July 10−13, 2017.

    Figure  7.  Locations of the mooring station (yellow pentagram), ISWs observed by CBERS-4/PAN (C0712), GF-1/WFV3 (G0712) and Aqua/MODIS (M0712) (red pentagrams) on July 12, 2017 and Landsat-7/ETM+ (L0713) and Terra/MODIS (M0713) (purple pentagrams) on July 13, 2017. The locations of the mooring station and ISWs observed by Landsat-7/ETM+ on July 13 and GF-1/WFV3 on July 12 are marked as S0, S1 and S2.

    Table  1.   Information of satellite images

    Image No.Image IDTimeSatellite (senor)Spatial resolution/m
    1M0710July 10, 2017, 05:30 UTCAqua (MODIS)250
    2M0711July 11, 2017, 03:10 UTCTerra (MODIS)250
    3C0712July 12, 2017, 02:59 UTCCBERS-4 (PAN)5
    4G0712July 12, 2017, 03:37 UTCGF-1 (WFV3)16
    5M0712July 12, 2017, 05:20 UTCAqua (MODIS)250
    6L0713July 13, 2017, 02:43 UTCLandsat-7 (ETM+)15
    7M0713July 13, 2017, 02:55 UTCTerra (MODIS)250
    下载: 导出CSV

    Table  2.   The characteristic parameters of the ISWs observed by satellites and the mooring CTD chain

    Image IDWater depth/ml/m Amplitude/m
    S-KdVS-NLSMooring
    M07103705004.955.168.5
    M07113907502.344.048.1
    C071239017542.0189.645.7
    G071237017639.4158.445.7
    M07123275004.334.345.7
    L071340812067.9419.566.1
    M07133987501.761.966.1
    Note: l is the peak-to-peak distance; S-KdV and S-NLS are amplitudes estimated using the KdV and the NLS equation approaches, respectively; the number in bold represents that the estimated amplitude is closer to the mooring observation.
    下载: 导出CSV

    Table  3.   ISW amplitudes derived from satellite observations in previous studies

    LiteratureSatellite (sensor)Spatial resolution/mRegionWater depth/ml/mAmplitude/m
    KdVNLSObservation
    Small et al. (1999)ERS-1 (SAR)30Malin Shelf50035024.249.0
    60040026.049.0
    70040031.749.0
    50035049.630.0
    Zheng et al. (2001)ERS-1 (SAR)30Portugues Continental Shelf14011026.023.0
    1402207.010.0
    1402406.05.0
    Radarsat-1 (SAR)100SCS35090048.0
    350110037.0
    Li et al. (2008)Envisat (ASAR)150SCS70998.06.0−10.0
    Li et al. (2013)ERS-1 (SAR)30Malin Shelf50035042.249.0
    60040037.849.0
    70040040.849.0
    Huang and Zhao (2014)Aqua (MODIS)250SCS31794301124.0126.0
    Zhang et al. (2016)Envisat (ASAR)150SCS923170.718.118.0
    Aqua (MODIS)25011788214.215.0
    Note: l is the peak-to-peak distance; − represents no data.
    下载: 导出CSV

    Table  4.   The relative error of satellite estimated ISW amplitude and bottom slope

    Image IDRelative error dA/%Bottom slope dh/%
    M071019.59.3
    M07118.74.4
    C07128.14.4
    G071213.79.3
    M071224.819.9
    L07132.70
    M07136.32.5
    下载: 导出CSV

    Table  5.   Propagation speeds of the ISWs at CBERS-4 and GF-1 locations

    Data sourcesSatellite derived
    propagation
    speed/(m·s−1)
    KdV-derived
    propagation
    speed/(m·s−1)
    CBERS-4CBERS-4 and GF-12.041.62
    CBERS-4 and MODIS1.34
    CBERS-4, GF-1 and mooring1.73
    mean1.70±0.35
    GF-1GF-1 and CBERS-42.041.58
    GF-1 and MODIS1.08
    GF-1, CBERS-4 and MODIS1.65
    mean1.59±0.48
    下载: 导出CSV

    Table  6.   The time that the ISWs passed the locations of the mooring (S0), Landsat-7 (S1) and GF-1 (S2)

    Time at S0Time at S1Time at S2
    July 10, 201703:0104:1005:27
    July 11, 201702:0802:4204:13
    July 12, 201701:4802:1703:37
    July 13, 201702:3102:4304:19
    Note: Time at S0 is mooring measured. The number in italic represents the ISW arrival time at S1 or S2 calculated by the phase speed derived from the KdV equation. The number in bold represents satellite-imaging time.
    下载: 导出CSV
  • [1] Agafontsev D S, Dias F, Kuznetsov E A. 2007. Deep-water internal solitary waves near critical density ratio. Physica D: Nonlinear Phenomena, 225(2): 153–168. doi: 10.1016/j.physd.2006.10.010
    [2] Alford M H, Peacock T, MacKinnon J A, et al. 2015. The formation and fate of internal waves in the South China Sea. Nature, 521(7550): 65–69. doi: 10.1038/nature14399
    [3] Amante C, Eakins B W. 2009. ETOPO1 arc-minute global relief model: procedures, data sources and analysis. In: NOAA Technical Memorandum NESDIS NGDC-24. https://repository.library.noaa.gov/view/noaa/1163[2019-03-05/2020-12-26]
    [4] Chang Ming-Huei, Lien Ren-Chieh, Tang Tswen Yung, et al. 2006. Energy flux of nonlinear internal waves in northern South China Sea. Geophysical Research Letters, 33(3): L03607
    [5] Chen Liang, Zheng Quanan, Xiong Xuejun, et al. 2018. A new type of internal solitary waves with a re-appearance period of 23 h observed in the South China Sea. Acta Oceanologica Sinica, 37(9): 116–118. doi: 10.1007/s13131-018-1252-y
    [6] Chin T M, Vazquez-Cuervo J, Armstrong E M. 2017. A multi-scale high-resolution analysis of global sea surface temperature. Remote Sensing of Environment, 200: 154–169. doi: 10.1016/j.rse.2017.07.029
    [7] Dai Dejun, Wang Wei, Zhang Qinghua, et al. 2011. Eigen solutions of internal waves over subcritical topography. Acta Oceanologica Sinica, 30(2): 1–8. doi: 10.1007/s13131-011-0099-2
    [8] Dong Di, Yang Xiaofeng, Li Xiaofeng, et al. 2016. SAR observation of eddy-induced mode-2 internal solitary waves in the South China Sea. IEEE Transactions on Geoscience and Remote Sensing, 54(11): 6674–6686. doi: 10.1109/TGRS.2016.2587752
    [9] Geng Minghui, Song Haibin, Guan Yongxian, et al. 2019. Analyzing amplitudes of internal solitary waves in the northern South China Sea by use of seismic oceanography data. Deep-Sea Research Part I: Oceanographic Research Papers, 146: 1–10. doi: 10.1016/j.dsr.2019.02.005
    [10] Guo Chuncheng, Chen Xueen. 2014. A review of internal solitary wave dynamics in the northern South China Sea. Progress in Oceanography, 121: 7–23. doi: 10.1016/j.pocean.2013.04.002
    [11] Helfrich K R, Melville W K. 2006. Long nonlinear internal waves. Annual Review of Fluid Mechanics, 38: 395–425. doi: 10.1146/annurev.fluid.38.050304.092129
    [12] Hsu M K, Liu A K. 2000. Nonlinear internal waves in the South China Sea. Canadian Journal of Remote Sensing, 26(2): 72–81. doi: 10.1080/07038992.2000.10874757
    [13] Huang Xiaodong, Chen Zhaohui, Zhao Wei, et al. 2016. An extreme internal solitary wave event observed in the northern South China Sea. Scientific Reports, 6(1): 30041. doi: 10.1038/srep30041
    [14] Huang Xiaodong, Zhao Wei. 2014. Information of internal solitary wave extracted from MODIS image: a case in the deep water of northern South China Sea. Periodical of Ocean University of China, 44(7): 19–23
    [15] Jackson C. 2007. Internal wave detection using the Moderate Resolution Imaging Spectroradiometer (MODIS). Journal of Geophysical Research: Oceans, 112(C11): C11012. doi: 10.1029/2007JC004220
    [16] Jia Tong, Liang Jianjun, Li Xiaoming, et al. 2019. Retrieval of internal solitary wave amplitude in shallow water by tandem spaceborne SAR. Remote Sensing, 11(14): 1706. doi: 10.3390/rs11141706
    [17] Lee C Y, Beardsley R C. 1974. The generation of long nonlinear internal waves in a weakly stratified shear flow. Journal of Geophysical Research, 79(3): 453–462. doi: 10.1029/JC079i003p00453
    [18] Lellouche J M, Le Galloudec O, Greiner E, et al. 2018. The Copernicus Marine Environment Monitoring Service global ocean 1/12° physical reanalysis GLORYS12V1: description and quality assessment. In: Proceedings of the Geophysical Research Abstracts, Vol. 20. Vienna, Austria: EGU
    [19] Li Xiaoyong, Wang Jing, Sun Meiling, et al. 2013. Internal wave parameter inversion at Malin Shelf edge based on the nonlinear Schrödinger equation. Applied Mechanics and Materials, 441: 388–392. doi: 10.4028/www.scientific.net/AMM.441.388
    [20] Li Xiaofeng, Zhao Zhongxiang, Han Zhen, et al. 2008. Internal solitary waves in the East China Sea. Acta Oceanologica Sinica, 27(3): 51–59
    [21] Liu Bingqing, Yang Hong, Zhao Zhongxiang, et al. 2014. Internal solitary wave propagation observed by tandem satellites. Geophysical Research Letters, 41(6): 2077–2085. doi: 10.1002/2014GL059281
    [22] O'Driscoll K, Levine M. 2017. Simulations and observation of nonlinear internal waves on the continental shelf: Korteweg-de Vries and extended Korteweg-de Vries solutions. Ocean Science, 13(5): 749–763. doi: 10.5194/os-13-749-2017
    [23] Osborne A R, Burch T L. 1980. Internal solitons in the Andaman Sea. Science, 208(4443): 451–460. doi: 10.1126/science.208.4443.451
    [24] Ostrovsky L A, Stepanyants Y A. 1989. Do internal solitions exist in the ocean. Reviews of Geophysics, 27(3): 293–310. doi: 10.1029/RG027i003p00293
    [25] Pelinovsky D. 1995. Intermediate nonlinear Schrödinger equation for internal waves in a fluid of finite depth. Physics Letters A, 197(5–6): 401–406. doi: 10.1016/0375-9601(94)00991-W
    [26] Ramp S R, Tang Tswen Yung, Duda T F, et al. 2004. Internal solitons in the northeastern South China Sea. Part I: Sources and deep water propagation. IEEE Journal of Oceanic Engineering, 29(4): 1157–1181. doi: 10.1109/JOE.2004.840839
    [27] Ramp S R, Yang Y J, Bahr F L. 2010. Characterizing the nonlinear internal wave climate in the northeastern South China Sea. Nonlinear Processes in Geophysics, 17(5): 481–498. doi: 10.5194/npg-17-481-2010
    [28] Small J, Hallock Z, Pavey G, et al. 1999. Observations of large amplitude internal waves at the Malin Shelf edge during SESAME 1995. Continental Shelf Research, 19(11): 1389–1436. doi: 10.1016/S0278-4343(99)00023-0
    [29] Stanton T P, Ostrovsky L A. 1998. Observations of highly nonlinear internal solitons over the continental shelf. Geophysical Research Letters, 25(14): 2695–2698. doi: 10.1029/98GL01772
    [30] Wang Jing, Guo Kai, Meng Junmin. 2012. Study of the propagation model for large-amplitude internal waves in deep sea. Chinese Journal of Lasers, 39(S2): S214004
    [31] Wang Juan, Huang Weigen, Yang Jingsong, et al. 2013. Study of the propagation direction of the internal waves in the South China Sea using satellite images. Acta Oceanologica Sinica, 32(5): 42–50. doi: 10.1007/s13131-013-0312-6
    [32] Xie Jieshuo, He Yinghui, Cai Shuqun. 2019. Bumpy topographic effects on the transbasin evolution of large-amplitude internal solitary wave in the northern South China Sea. Journal of Geophysical Research: Oceans, 124(7): 4677–4695. doi: 10.1029/2018JC014837
    [33] Xie Jieshuo, He Yinghui, Lü Haibin, et al. 2016. Distortion and broadening of internal solitary wavefront in the northeastern South China Sea deep basin. Geophysical Research Letters, 43(14): 7617–7624. doi: 10.1002/2016GL070093
    [34] Xu Zhaoting, Lou Shunli, Tian Jiwei, et al. 1996. NLS equation of internal waves in weakly stratified ocean. Chinese Journal of Oceanology and Limnology, 14(2): 121–127. doi: 10.1007/BF02850368
    [35] Xu Qing, Zheng Quan’an, Lin Hui, et al. 2008. Dynamical analysis of mesoscale eddy—induced ocean internal waves using linear theories. Acta Oceanologica Sinica, 27(3): 60–69
    [36] Xue Jingshuang, Graber H C, Lund B, et al. 2013. Amplitudes estimation of large internal solitary waves in the mid-Atlantic bight using synthetic aperture radar and marine X-band radar images. IEEE Transactions on Geoscience and Remote Sensing, 51(6): 3250–3258. doi: 10.1109/TGRS.2012.2221467
    [37] Yang Jingsong, Huang Weigen, Zhou Chenghu, et al. 2003. The International Society for Optical Engineering. Proceedings of SPIE, 4892: 450–454. doi: 10.1117/12.466772
    [38] Zhang Xudong, Wang Jing, Sun Lina, et al. 2016. Study on the amplitude inversion of internal waves at Wenchang area of the South China Sea. Acta Oceanologica Sinica, 35(7): 14–19. doi: 10.1007/s13131-016-0902-1
    [39] Zhao Zhongxiang, Klemas V, Zheng Quanan, et al. 2004. Remote sensing evidence for baroclinic tide origin of internal solitary waves in the northeastern South China Sea. Geophysical Research Letters, 31(6): L06302
    [40] Zhao Zhongxiang, Liu Bingqing, Li Xiaofeng. 2014. Internal solitary waves in the China seas observed using satellite remote-sensing techniques: a review and perspectives. International Journal of Remote Sensing, 35(11–12): 3926–3946. doi: 10.1080/01431161.2014.916442
    [41] Zheng Quanan. 2017. Satellite SAR Detection of Sub-Mesoscale Ocean Dynamic Processes. London: World Scientific, 121–178
    [42] Zheng Quanan, Song Y T, Lin Hui, et al. 2008. On generation source sites of internal waves in the Luzon Strait. Acta Oceanologica Sinica, 27(3): 38–50
    [43] Zheng Quanan, Susanto R D, Ho C R, et al. 2007. Statistical and dynamical analyses of generation mechanisms of solitary internal waves in the northern South China Sea. Journal of Geophysical Research: Oceans, 112(C3): C03021
    [44] Zheng Quanan, Xie Lingling, Xiong Xuejun, et al. 2020. Progress in research of submesoscale processes in the South China Sea. Acta Oceanologica Sinica, 39(1): 1–13. doi: 10.1007/s13131-019-1521-4
    [45] Zheng Quanan, Yuan Yeli, Klemas V, et al. 2001. Theoretical expression for an ocean internal soliton synthetic aperture radar image and determination of the soliton characteristic half width. Journal of Geophysical Research: Oceans, 106(C12): 31415–31423. doi: 10.1029/2000JC000726
  • 加载中
图(7) / 表(6)
计量
  • 文章访问数:  111
  • HTML全文浏览量:  38
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-15
  • 录用日期:  2021-05-08
  • 网络出版日期:  2022-03-16

目录

    /

    返回文章
    返回