FIO-ESM v2.0 CORE2-forced experiment for the CMIP6 Ocean Model Intercomparison Project

Qi Shu Zhenya Song Ying Bao Xiaodan Yang Yajuan Song Xinfang Li Meng Wei Fangli Qiao

Qi Shu, Zhenya Song, Ying Bao, Xiaodan Yang, Yajuan Song, Xinfang Li, Meng Wei, Fangli Qiao. FIO-ESM v2.0 CORE2-forced experiment for the CMIP6 Ocean Model Intercomparison Project[J]. Acta Oceanologica Sinica, 2022, 41(10): 22-31. doi: 10.1007/s13131-022-2000-x
Citation: Qi Shu, Zhenya Song, Ying Bao, Xiaodan Yang, Yajuan Song, Xinfang Li, Meng Wei, Fangli Qiao. FIO-ESM v2.0 CORE2-forced experiment for the CMIP6 Ocean Model Intercomparison Project[J]. Acta Oceanologica Sinica, 2022, 41(10): 22-31. doi: 10.1007/s13131-022-2000-x

doi: 10.1007/s13131-022-2000-x

FIO-ESM v2.0 CORE2-forced experiment for the CMIP6 Ocean Model Intercomparison Project

Funds: The National Key R&D Program of China under contract Nos 2018YFA0605701 and 2016YFB0201100; the National Natural Science Foundation of China under contract Nos 41941012 and 41821004; the Basic Scientific Fund for National Public Research Institute of China (ShuXingbei Young Talent Program) under contract No. 2019S06.
More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  Drifts of horizontal and global mean potential temperature and salinity. Drift is defined as deviation from the value obtained from the first model year. Dashed lines indicate the 62-year forcing cycle, corresponding to calendar years 1948−2009, which was repeated for 5 times.

    Figure  2.  Time series of annual mean Atlantic Meridional Overturning Circulation (AMOC) index maximum at 26.5°N (a) and Global Meridional Overturning Circulation (GMOC) index minimum between 2000 m depth and ocean bottom at 30°S (b). Dashed lines indicate the 62-year forcing cycle, corresponding to calendar years 1948−2009, which was repeated.

    Figure  3.  Biases of zonally averaged temperature (a) and salinity (b) from the last cycle of the FIO-ESM v2.0 OMIP-1 simulation relative to observed climatological values from World Ocean Atlas 2013 version 2 (WOA13 v2). Black contour is zonally averaged temperature and salinity from WOA13v2.

    Figure  4.  Biases of sea surface temperature (a) and salinity (b) from the last cycle of the FIO-ESM v2.0 OMIP-1 simulation relative to observed climatological values from World Ocean Atlas 2013 version 2 (WOA13 v2).

    Figure  5.  Simulated and observed mixed layer depth (MLD) in summer and winter. Mixed layer depth is defined as the depth where ocean potential density deviates from its value at the surface by 0.03 kg/m3. The average of January, February, and March is selected as the typical months for boreal winter (austral summer), and the average of July, August, and September is selected as the typical months for boreal summer (austral winter). Observations are from de Boyer Montégut et al. (2004).

    Figure  6.  Atlantic overturning streamfunction from the last cycle of the FIO-ESM v2.0 OMIP-1 simulation (a), AMOC streamfunction profiles (brown line: FIO-ESM v2.0 OMIP-1 simulation, blue line: RAPID observations) at 26.5°N between 2004 and 2009 (b), and AMOC index from the last cycle of the FIO-ESM v2.0 OMIP-1 simulation (c).

    Figure  7.  Diurnal amplitude of sea surface temperature (SST) in January (a) and July (b) in the last cycle of the FIO-ESM v2.0 OMIP-1 simulation. Diurnal amplitude of SST is defined as the difference between maximum and minimum of SST in the same day.

    Figure  8.  Scatter plot of mean sea surface temperature (SST) diurnal amplitude between 2002 and 2009 from the FIO-ESM v2.0 OMIP-1 simulation and from observations of 107 moorings as part of TOGA/COARE.

    Figure  9.  Arctic (a) and Antarctic (b) sea ice extent (SIE) from the last cycle of the FIO-ESM v2.0 OMIP-1 simulations and satellite-derived observations. Sea ice extent is calculated as the sum of the area where sea ice concentration exceeds 15%.

    Figure  10.  Simulated Arctic sea ice thickness in March from the last cycle of the FIO-ESM v2.0 OMIP-1 simulation (a) and Pan-Arctic Ice-Ocean Modeling and Assimilation System (PIOMAS) (b).

    Figure  11.  Average significant wave height (SWH) from 1979−2009 obtained from ERA5 reanalysis (a, c), and the FIO-ESM v2.0 OMIP-1 simulation (b, d) in January (a, b) and July (c, d).

    Figure  12.  Linear trends of OMTP-1 significant wave height (SWH) during 1985 to 2008. Dots indicate locations where linear trend exceeds 90% confidence level.

  • Bailey D, Holland M, Hunke E, et al. 2011. Community Ice CodE (CICE) user’s guide version 4.0 released with CCSM 4.0. Tech rep, Los Alamos National Library
    Bao Ying, Song Zhenya, Qiao Fangli. 2020. FIO-ESM Version 2.0: Model description and evaluation. Journal of Geophysical Research: Oceans, 125(6): e2019JC016036. doi: 10.1029/2019JC016036
    Bernie D J, Guilyardi E, Madec G, et al. 2008. Impact of resolving the diurnal cycle in an ocean-atmosphere GCM: Part 2. A diurnally coupled CGCM. Climate Dynamics, 31(7–8): 909–925. doi: 10.1007/s00382-008-0429-z
    Chen Siyu, Qiao Fangli, Huang Chuanjiang, et al. 2018. Effects of the non-breaking surface wave-induced vertical mixing on winter mixed layer depth in subtropical regions. Journal of Geophysical Research: Oceans, 123(4): 2934–2944. doi: 10.1002/2017JC013038
    Clayson C A, Weitlich D. 2007. Variability of tropical diurnal sea surface temperature. Journal of Climate, 20(2): 334–352. doi: 10.1175/JCLI3999.1
    Craig A P, Vertenstein M, Jacob R. 2012. A new flexible coupler for earth system modeling developed for CCSM4 and CESM1. The International Journal of High Performance Computing Applications, 26(1): 31–42. doi: 10.1177/1094342011428141
    Dai Aiguo, Qian Taotao, Trenberth K E, et al. 2009. Changes in continental freshwater discharge from 1948 to 2004. Journal of Climate, 22(10): 2773–2792. doi: 10.1175/2008JCLI2592.1
    Dai Aiguo, Trenberth K E. 2002. Estimates of freshwater discharge from continents: Latitudinal and seasonal variations. Journal of Hydrometeorology, 3(6): 660–687. doi: 10.1175/1525-7541(2002)003<0660:EOFDFC>2.0.CO;2
    Danabasoglu G, Large W G, Tribbia J J, et al. 2006. Diurnal coupling in the tropical oceans of CCSM3. Journal of Climate, 19(11): 2347–2365. doi: 10.1175/JCLI3739.1
    Danabasoglu G, Yeager S G, Bailey D, et al. 2014. North Atlantic simulations in coordinated ocean-ice reference experiments phase II (CORE-II): Part I. Mean states. Ocean Modelling, 73: 76–107. doi: 10.1016/j.ocemod.2013.10.005
    Danabasoglu G, Yeager S G, Kim W M, et al. 2016. North Atlantic simulations in Coordinated Ocean-ice Reference Experiments phase II (CORE-II): Part II. Inter-annual to decadal variability. Ocean Modelling, 97: 65–90. doi: 10.1016/j.ocemod.2015.11.007
    de Boyer Montégut C, Madec G, Fischer A S, et al. 2004. Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology. Journal of Geophysical Research: Oceans, 109(C12): C12003. doi: 10.1029/2004JC002378
    Downes S M, Farneti R, Uotila P, et al. 2015. An assessment of Southern Ocean water masses and sea ice during 1988–2007 in a suite of interannual CORE-II simulations. Ocean Modelling, 94: 67–94. doi: 10.1016/j.ocemod.2015.07.022
    Eyring V, Bony S, Meehl G A, et al. 2016. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development, 9(5): 1937–1958. doi: 10.5194/gmd-9-1937-2016
    Fetterer F, Knowles K, Meier W, et al. 2017. Sea ice index, version 3. Boulder, CO, USA: National Snow and Ice Data Center,
    Frajka-Williams E, Moat B I, Smeed D A, et al. 2021. Atlantic meridional overturning circulation observed by the RAPID-MOCHA-WBTS (RAPID-Meridional Overturning Circulation and Heatflux Array-Western Boundary Time Series) array at 26N from 2004 to 2020 (v2020.1). British Oceanographic Data Centre-Natural Environment Research Council,
    Griffies S M, Biastoch A, Böning C, et al. 2009. Coordinated ocean-ice reference experiments (COREs). Ocean Modelling, 26(1–2): 1–46. doi: 10.1016/j.ocemod.2008.08.007
    Griffies S M, Danabasoglu G, Durack P J, et al. 2016. OMIP contribution to CMIP6: Experimental and diagnostic protocol for the physical component of the Ocean Model Intercomparison Project. Geoscientific Model Development, 9(9): 3231–3296. doi: 10.5194/gmd-9-3231-2016
    Ham Y G, Kug J S, Kang I S, et al. 2010. Impact of diurnal atmosphere-ocean coupling on tropical climate simulations using a coupled GCM. Climate Dynamics, 34(6): 905–917. doi: 10.1007/s00382-009-0586-8
    Hersbach H, Bell B, Berrisford P, et al. 2019. Global reanalysis: Goodbye ERA-Interim, hello ERA5. ECMWF Newsletter 159, 17–24, https://www.ecmwf.int/en/newsletter/159/meteorology/global-reanalysis-goodbye-era-interim-hello-era5 [2019-04-01/2021-07-16]
    Huang Chuanjiang, Qiao Fangli, Dai Dejun. 2014. Evaluating CMIP5 simulations of mixed layer depth during summer. Journal of Geophysical Research: Oceans, 119(4): 2568–2582. doi: 10.1002/2013JC009535
    Huang Chuanjiang, Qiao Fangli, Shu Qi, et al. 2012. Evaluating austral summer mixed-layer response to surface wave-induced mixing in the southern Ocean. Journal of Geophysical Research: Oceans, 117(C11): C00J18. doi: 10.1029/2012JC007892
    Huang N E. 1971. Derivation of Stokes drift for a deep-water random gravity wave field. Deep-Sea Research and Oceanographic Abstracts, 18(2): 255–259. doi: 10.1016/0011-7471(71)90115-X
    Ilıcak M, Drange H, Wang Qiang, et al. 2016. An assessment of the Arctic Ocean in a suite of interannual CORE-II simulations. Part III: Hydrography and fluxes. Ocean Modelling, 100: 141–161. doi: 10.1016/j.ocemod.2016.02.004
    Kawai Y, Wada A. 2007. Diurnal sea surface temperature variation and its impact on the atmosphere and ocean: A review. Journal of Oceanography, 63(5): 721–744. doi: 10.1007/s10872-007-0063-0
    Kobayashi S, Ota Y, Harada Y, et al. 2015. The JRA-55 reanalysis: General specifications and basic characteristics. Journal of the Meteorological Society of Japan, 93(1): 5–48
    Large W G, McWilliams J C, Doney S C. 1994. Oceanic vertical mixing: a review and a model with a nonlocal boundary layer parameterization. Reviews of Geophysics, 32(4): 363–403. doi: 10.1029/94RG01872
    Large W G, Yeager S G. 2009. The global climatology of an interannually varying air–sea flux data set. Climate Dynamics, 33(2–3): 341–364. doi: 10.1007/s00382-008-0441-3
    Locarnini R A, Mishonov A V, Antonov J I, et al. 2013. World ocean atlas 2013. Volume 1: Temperature. Silver Spring: National Oceanic and Atmospheric Administration
    Lumpkin R, Speer K. 2007. Global ocean meridional overturning. Journal of Physical Oceanography, 37(10): 2550–2562. doi: 10.1175/JPO3130.1
    Masson S, Terray P, Madec G, et al. 2012. Impact of intra-daily SST variability on ENSO characteristics in a coupled model. Climate Dynamics, 39(3–4): 681–707. doi: 10.1007/s00382-011-1247-2
    Qiao Fangli, Song Zhenya, Bao Ying, et al. 2013. Development and evaluation of an Earth System Model with surface gravity waves. Journal of Geophysical Research: Oceans, 118(9): 4514–4524. doi: 10.1002/jgrc.20327
    Qiao Fangli, Yuan Yeli, Ezer T, et al. 2010. A three-dimensional surface wave-ocean circulation coupled model and its initial testing. Ocean Dynamics, 60(5): 1339–1355. doi: 10.1007/s10236-010-0326-y
    Qiao Fangli, Yuan Yeli, Yang Yongzeng, et al. 2004. Wave-induced mixing in the upper ocean: Distribution and application to a global ocean circulation model. Geophysical Research Letters, 31(11): L11303
    Qiao Fangli, Zhao Wei, Yin Xunqiang, et al. 2016. A highly effective global surface wave numerical simulation with ultra-high resolution. In: SC’16: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis. Salt Lake City, UT, USA: IEEE, 46–56
    Rascle N, Ardhuin F, Queffeulou P, et al. 2008. A global wave parameter database for geophysical applications: Part 1. Wave-current–turbulence interaction parameters for the open ocean based on traditional parameterizations. Ocean Modelling, 25(3–4): 154–171. doi: 10.1016/j.ocemod.2008.07.006
    Shu Qi, Qiao Fangli, Song Zhenya, et al. 2011. Improvement of MOM4 by including surface wave-induced vertical mixing. Ocean Modelling, 40(1): 42–51. doi: 10.1016/j.ocemod.2011.07.005
    Shu Qi, Wang Qiang, Su Jie, et al. 2019. Assessment of the Atlantic water layer in the Arctic Ocean in CMIP5 climate models. Climate Dynamics, 53(9–10): 5279–5291. doi: 10.1007/s00382-019-04870-6
    Smith R, Jones P, Briegleb B P, et al. 2010. The Parallel Ocean Program (POP) reference manual: ocean component of the Community Climate System Model (CCSM), https://www.cesm.ucar.edu/models/cesm2/ocean/doc/sci/POPRefManual.pdf [2010-03-23/2021-06-01]
    Song Z, Qiao F, Bao Y, et al. 2020. FIO-QLNM FIO-ESM2.0 model output prepared for CMIP6 OMIP OMIP 1. Version 20200324. Earth System Grid Federation,
    Tsujino H, Urakawa L S, Griffies S M, et al. 2020. Evaluation of global ocean-sea-ice model simulations based on the experimental protocols of the Ocean Model Intercomparison Project phase 2 (OMIP-2). Geoscientific Model Development, 13(8): 3643–3708. doi: 10.5194/gmd-13-3643-2020
    Tsujino H, Urakawa S, Nakano H, et al. 2018. JRA-55 based surface dataset for driving ocean-sea-ice models (JRA55-do). Ocean Modelling, 130: 79–139. doi: 10.1016/j.ocemod.2018.07.002
    Wang Shizhu, Wang Qiang, Shu Qi, et al. 2019. Improving the upper-ocean temperature in an ocean climate model (FESOM 1.4): Shortwave penetration versus mixing induced by nonbreaking surface waves. Journal of Advances in Modeling Earth Systems, 11(2): 545–557. doi: 10.1029/2018MS001494
    Wang Yonggang, Qiao Fangli, Fang Guohong, et al. 2010. Application of wave‐induced vertical mixing to the K profile parameterization scheme. Journal of Geophysical Research: Oceans, 115(C9): C09014
    Webster P J, Lukas R. 1992. TOGA COARE: the coupled ocean-atmosphere response experiment. Bulletin of the American Meteorological Society, 73(9): 1377–1416. doi: 10.1175/1520-0477(1992)073<1377:TCTCOR>2.0.CO;2
    Yang Xiaodan, Song Zhenya, Tseng Y H, et al. 2017. Evaluation of three temperature profiles of a sublayer scheme to simulate SST diurnal cycle in a global ocean general circulation model. Journal of Advances in Modeling Earth Systems, 9(4): 1994–2006. doi: 10.1002/2017MS000927
    Young I R, Zieger S, Babanin A V. 2011. Global trends in wind speed and wave height. Science, 332(6028): 451–455. doi: 10.1126/science.1197219
    Zhang Jinlun, Rothrock D A. 2003. Modeling global sea ice with a thickness and enthalpy distribution model in generalized curvilinear coordinates. Monthly Weather Review, 131(5): 845–861. doi: 10.1175/1520-0493(2003)131<0845:MGSIWA>2.0.CO;2
    Zweng M M, Reagan J R, Antonov J I, et al. 2013. World ocean atlas 2013. Volume 2: Salinity. Silver Spring, ML, USA: National Oceanic and Atmospheric Administration
  • 加载中
图(12)
计量
  • 文章访问数:  1800
  • HTML全文浏览量:  759
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-16
  • 录用日期:  2021-11-29
  • 网络出版日期:  2022-05-11
  • 刊出日期:  2022-10-27

目录

    /

    返回文章
    返回