Automated multi-scale classification of the terrain units of the Jiaxie Guyots and their mineral resource characteristics

Yong Yang Gaowen He Yonggang Liu Jinfeng Ma Zhenquan Wei Binbin Guo

Yong Yang, Gaowen He, Yonggang Liu, Jinfeng Ma, Zhenquan Wei, Binbin Guo. Automated multi-scale classification of the terrain units of the Jiaxie Guyots and their mineral resource characteristics[J]. Acta Oceanologica Sinica. doi: 10.1007/s13131-021-1981-1
Citation: Yong Yang, Gaowen He, Yonggang Liu, Jinfeng Ma, Zhenquan Wei, Binbin Guo. Automated multi-scale classification of the terrain units of the Jiaxie Guyots and their mineral resource characteristics[J]. Acta Oceanologica Sinica. doi: 10.1007/s13131-021-1981-1

doi: 10.1007/s13131-021-1981-1

Automated multi-scale classification of the terrain units of the Jiaxie Guyots and their mineral resource characteristics

Funds: The National Natural Science Foundation of China under contract Nos 42072324 and 91958202; the Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) under contract No. GML2019ZD0106; the Resource & Environment Project of COMRA under contract No. DY135-C1-1-03; the Geological Survey Project of CGS under contract No. DD20190629.
More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  Seafloor terrain map of Jiaxie Guyots.

    Figure  2.  Terrain factors. a. Slope. b. Aspect. c. VRM. d. Curvature. e. Broad_BPI. f. Fine_BPI.

    Figure  3.  Result of seamount terrain units. a. First-order units; b. second-order units.

    Figure  4.  Multi-scale terrain analysis. a. First-order units (10 km); b. first-order units (6 km); c. second-order units (3 km).

    Figure  5.  Synthesis profile of guyots terrain.

    Figure  6.  Geological analysis of different terrain units on the guyots.

    Table  1.   Terrain factors

    Terrain factorsFormulationDescriptionsReference
    Slope$S = \arctan \sqrt { { {\left(\dfrac{ { {{\rm{d}} }z} }{ { { {{\rm{d}}} }x} }\right)}^2} + { {\left(\dfrac{ { { {{\rm{d}}} }z} }{ { { {{\rm{d}}} }y} }\right)}^2} }$ Horn(1981)
    Aspect$A = 57.295\;78 \times \arctan 2\left(\dfrac{ { { {{\rm{d}}} }z} }{ { { {{\rm{d}}} }y} } + \dfrac{ { { {{\rm{d}}} }z} }{ { { {{\rm{d}}} }x} }\right)$
    ${A_N} = \cos (A),{A_E} = \sin (A)$
    AN-North, AE-East. Zevenbergen and Thorne(1987)
    SAPA${ {{\rm{SAPA}}} } = \dfrac{ { { {{\rm{Are}}{{\rm{a}}_{{\rm{surface}}} } } } } }{ { { {{\rm{Are}}{{\rm{a}}_{{\rm{planer}}} } } } } }$Jenness(2004)
    VRM${ {{\rm{VRM}}} } = 1 - \dfrac{ { { {{\rm{Abs}}} }({{r}})} }{{{n}}}$, ${ {{\rm{Abs}}} }(r) = \sqrt { { {\left( {\displaystyle\sum x } \right)}^2} + { {\left( {\displaystyle\sum y } \right)}^2} + { {\left( {\displaystyle\sum z } \right)}^2} }$
    $xy = 1 \times \sin (\alpha )$, $ z = 1 \times \cos (\alpha ) $, $ x = xy \times \sin (\beta ) $, $ y = xy \times \cos (\beta ) $
    Sappington et al.(2007)
    BPI${ { {\rm{BPI}}({\rm{ScaleFactor}})} } = { { {{\rm{int}}} } } { {({\rm{Depth}} - {\rm{Dept}}{{\rm{h}}_{{\rm{FocalMean}}} }({\rm{Circle}},{\rm{Rad}}) + 0.5) } }$
    ${\rm{BPI}}({\rm{ScaleFactor}}) = {{\rm{int}}} ({\rm{Depth}} - {\rm{Dept}}{{\rm{h}}_{{\rm{FocalMean}}} }({\rm{Annulus}},{\rm{IRad}},{\rm{ORad}}) + 0.5)$
    Lundblad et al.(2006)
    下载: 导出CSV

    Table  2.   Parameters of seamount terrain classification

    First-order terrain units
    IDFirst-order unitsB_BPI_bottomB_BPI_topF_BPI_bottomF_BPI_topSlope_bottomSlope_topDepth_bottomDepth_top
    1crest100
    2depression−100
    3flat on summit−1001005−2 000
    4flat on slope−1001005−2 000
    5slope−1001005
    Second-order terrain units
    IDSecond-order unitsB_BPI_bottomB_BPI_topF_BPI_bottomF_BPI_topSlope_bottomSlope_topDepth_bottomDepth_top
    11local depressions on crests100−100
    12local crests100100
    13broad crests100−100100
    21local depressions−100−100
    22local protrusions
    on depressions
    −100100
    23broad depressions−100−100100
    31flats on summit−1001005−2 000
    41flats on bottom−1001005−2 000
    51local depressions on slope−100100−1005
    52gentle slopes−100100−1001005
    53local protrusions on slopes−100100100 5
    下载: 导出CSV
  • [1] Anderson J T, Van Holliday D, Kloser R, et al. 2008. Acoustic seabed classification: current practice and future directions. ICES Journal of Marine Science, 65(6): 1004–1011. doi: 10.1093/icesjms/fsn061
    [2] Asavin A M, Kubrakova I V, Mel’nikov M E, et al. 2010. Geochemical zoning in ferromanganese crusts of Ita-MaiTai Guyot. Geochemistry International, 48(5): 423–445. doi: 10.1134/S0016702910050010
    [3] Bishop M P, James L A, Shroder J F Jr, et al. 2012. Geospatial technologies and digital geomorphological mapping: Concepts, issues and research. Geomorphology, 137(1): 5–26. doi: 10.1016/j.geomorph.2011.06.027
    [4] Calder B R, Mayer L A. 2003. Automatic processing of high-rate, high-density multibeam echosounder data. Geochemistry, Geophysics, Geosystems, 4(6): 1048,
    [5] Casalbore D. 2017. Volcanic Islands and Seamounts. In: Micallef A, Krastel S, Savini A, eds. Submarine Geomorphology. Cham: Springer, 333–347
    [6] Czarnecki M F, Bergin J M. 1986. Characteristics of the two-dimensional spectrum of roughness on a seamount. Washington, DC: Naval Research Laboratory, 483–488. Landscape Ecology, 30(1): 181–192. doi: 10.1007/s10980-014-0118-8
    [7] Du Preez C. 2015. A new arc-chord ratio (ACR) rugosity index for quantifying three-dimensional landscape structural complexity
    [8] Galparsoro I, Connor D W, Borja Á, et al. 2012. Using EUNIS Habitat classification for benthic mapping in European seas: Present concerns and future needs. Marine Pollution Bulletin, 64(12): 2630–2638. doi: 10.1016/j.marpolbul.2012.10.010
    [9] Harris P T, Macmillan-Lawler M, Rupp J, et al. 2014. Geomorphology of the oceans. Marine Geology, 352: 4–24. doi: 10.1016/j.margeo.2014.01.011
    [10] Hein J R, Koschinsk A, Bau M, et al. 2000. Chapter9-Cobalt-rich ferromanganese crusts in the Pacific. In: Cronan D S, ed. Handbook of Marine Mineral Deposits. New York: CRC Press, 239–279
    [11] Hein J R, Koschinsky A. 2013. Deep-ocean ferromanganese crusts and nodules. In: Heinrich D, Karl K T, eds. Treatise on Geochemistry. 2nd ed. Amsterdam: Elsevier, 273–291
    [12] Horn B K P. 1981. Hill shading and the reflectance map. Proceedings of the IEEE, 69(1): 14–47. doi: 10.1109/PROC.1981.11918
    [13] Jasiewicz J, Stepinski T F. 2013. Geomorphonsa pattern recognition approach to classification and mapping of landforms. Geomorphology, 182: 147–156. doi: 10.1016/j.geomorph.2012.11.005
    [14] Jenness J S. 2004. Calculating landscape surface area from digital elevation models. Wildlife Society bulletin, 32(3): 829–839. doi: 10.2193/0091-7648(2004)032[0829:CLSAFD]2.0.CO;2
    [15] Kågesten G, Fiorentino D, Baumgartner F, et al. 2019. How do continuous high-resolution models of patchy seabed habitats enhance classification schemes?. Geosciences, 9(5): 237,
    [16] Kim S S, Wessel P. 2011. New global seamount census from altimetry-derived gravity data. Geophysical Journal International, 186(2): 615–631. doi: 10.1111/j.1365-246X.2011.05076.x
    [17] Lecours V, Dolan M F J, Micallef A, et al. 2016. A review of marine geomorphometry, the quantitative study of the seafloor. Hydrology and Earth System Sciences, 20(8): 3207–3244. doi: 10.5194/hess-20-3207-2016
    [18] Ligas M, Banasik P. 2011. Conversion between Cartesian and geodetic coordinates on a rotational ellipsoid by solving a system of nonlinear equations. Geodesy and Cartography, 60(2): 145–159. doi: 10.2478/v10277-012-0013-x
    [19] Lundblad E R, Wright D J, Miller J, et al. 2006. A benthic terrain classification scheme for American Samoa. Marine Geodesy, 29(2): 89–111. doi: 10.1080/01490410600738021
    [20] Masson D G, Watts A B, Gee M J R, et al. 2002. Slope failures on the flanks of the western Canary Islands. Earth-Science Reviews, 57(1–2): 1–35. doi: 10.1016/S0012-8252(01)00069-1
    [21] Mitchell N C. 2001. Transition from circular to stellate forms of submarine volcanoes. Journal of Geophysical Research: Solid Earth, 106(B2): 1987–2003. doi: 10.1029/2000JB900263
    [22] Na Jieying, Chen Wanying, Zhang Dongsheng, et al. 2021. Morphological description and population structure of an ophiuroid species from cobalt-rich crust seamounts in the Northwest Pacific: implications for marine protection under deep-sea mining. Acta Oceanologica Sinica, 40(12): 79–89. doi: 10.1007/s13131-020-1666-1
    [23] Palomino D, Vázquez J T, Somoza L, et al. 2016. Geomorphological features in the southern Canary Island Volcanic Province: The importance of volcanic processes and massive slope instabilities associated with seamounts. Geomorphology, 255: 125–139. doi: 10.1016/j.geomorph.2015.12.016
    [24] Petersen S, Krätschell A, Augustin N, et al. 2016. News from the seabed-Geological characteristics and resource potential of deep-sea mineral resources. Marine Policy, 70: 175–187. doi: 10.1016/j.marpol.2016.03.012
    [25] Sappington J M, Longshore K M, Thompson D B. 2007. Quantifying landscape ruggedness for animal habitat analysis: a case study using Bighorn Sheep in the Mojave Desert. Journal of Wildlife Management, 71(5): 1419–1426. doi: 10.2193/2005-723
    [26] Sisavath E, Babonneau N, Saint-Ange F, et al. 2011. Morphology and sedimentary architecture of a modern volcaniclastic turbidite system: the Cilaos fan, offshore La Réunion Island. Marine Geology, 288(1–4): 1–17. doi: 10.1016/j.margeo.2011.06.011
    [27] Staudigel H, Koppers A A P. 2015. Chapter 22-Seamounts and island building. In: Sigurdsson H, ed. The Encyclopedia of Volcanoes. 2nd ed. Amsterdam: Elsevier, 405–421
    [28] Strong J A, Clements A, Lillis H, et al. 2019. A review of the influence of marine habitat classification schemes on mapping studies: Inherent assumptions, influence on end products, and suggestions for future developments. ICES Journal of Marine Science, 76(1): 10–22. doi: 10.1093/icesjms/fsy161
    [29] Tang Guoan. 2014. Progress of DEM and digital terrain analysis in China. Acta Geographica Sinica, 69(9): 1305–1325
    [30] Tang Guoan, Na Jiaming, Cheng Weiming. 2017. Progress of digital terrain analysis on regional geomorphology in China. Acta Geodaetica et Cartographica Sinica, 46(10): 1570–1591
    [31] Tozer B, Sandwell D T, Smith W H F, et al. 2019. Global bathymetry and topography at 15 Arc Sec: SRTM15+. Earth and Space Science, 6(10): 1847–1864. doi: 10.1029/2019EA000658
    [32] Utkin V P. 2006. Role of strike-slip faulting of the oceanic lithosphere in the formation of Pacific volcanic belts. Doklady Earth Sciences, 409(1): 692–696. doi: 10.1134/S1028334X06050023
    [33] Walbridge S, Slocum N, Pobuda M, et al. 2018. Unified geomorphological analysis workflows with Benthic Terrain modeler. Geosciences, 8(3): 94. doi: 10.3390/geosciences8030094
    [34] Watt S F L, Talling P J, Vardy M E, et al. 2012. Widespread and progressive seafloor-sediment failure following volcanic debris avalanche emplacement: Landslide dynamics and timing offshore Montserrat, Lesser Antilles. Marine Geology, 323–325: 69–94,
    [35] Weiss A D. 2001. Topographic position and landforms analysis. Paper presented at the ESRI International User Conference, San Diego, CA
    [36] Wright D, Pendleton M, Boulware J, et al. 2018. ArcGIS Benthic Terrain Modeler (BTM), v. 3.0, Environmental Systems Research Institute, NOAA Coastal Services Center, Massachusetts Office of Coastal Zone Management. https://esriurl.com/5754 [2018-02-27]
    [37] Xu Jian, Zheng Yulong, Bao Gengsheng, et al. 2011. Research of seamount micro-topography based on acoustic deep-tow system investigation: A case from the Marcus-Wake Ridge area. Journal of Marine Sciences, 29(1): 17–24
    [38] Yang Yong, He Gaowen, Liu Fanglan, et al. 2016a. Gravity and magnetic anomalies of Jiaxie Guyots and their structural and sedimentary characteristics. Marine Geology & Quaternary Geology, 36(1): 107–113
    [39] Yang Yong, He Gaowen, Ma Jinfeng, et al. 2020. Acoustic quantitative analysis of ferromanganese nodules and cobalt-rich crusts distribution areas using EM122 multibeam backscatter data from deep-sea basin to seamount in western Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers, 161: 103281. doi: 10.1016/j.dsr.2020.103281
    [40] Yang Yong, He Gaowen, Zhu Kechao, et al. 2016b. Classification of seafloor geological types of Qianyu seamount from mid-Pacific seamounts using multibeam backscatter intensity data. Earth Science, 41(4): 718–728
    [41] Zevenbergen L W, Thorne C R. 1987. Quantitative analysis of land surface topography. Earth Surface Processes and Landforms, 12(1): 47–56. doi: 10.1002/esp.3290120107
    [42] Zhang Huodai, Yao Huiqiang, Yang Yong, et al. 2018. Origin of multiple flat tables on Caiwei Guyots in West Pacific. Marine Geology & Quaternary Geology, 38(6): 91–97
    [43] Zhang Weiyan, Zhang Fuyuan, Zhu Kechao, et al. 2009. Fractal research on seamount topography in the West Pacific Ocean. Geoscience, 23(6): 1138–1146
    [44] Zhang Huodai, Zhu Benduo, Guan Yongxian, et al. 2017. Topographic features of the seamounts in the central basin of the South China Sea: based on multi-beam bathymetric data. Marine Geology & Quaternary Geology, 37(6): 149–157
    [45] Zhao Jianhu, Ouyang Yongzhong, Wang Aixue. 2017. Status and development tendency for seafloor terrain measurement technology. Acta Geodaetica et Cartographica Sinica, 46(10): 1786–1794
    [46] Zhao Bin, Yang Yong, Zhang Xiangyu, et al. 2020. Sedimentary characteristics based on sub-bottom profiling and the implications for mineralization of cobalt-rich ferromanganese crusts at Weijia Guyot, western Pacific Ocean. Deep-Sea Research Part I: Oceanographic Research Papers, 158: 103223. doi: 10.1016/j.dsr.2020.103223
  • 加载中
计量
  • 文章访问数:  44
  • HTML全文浏览量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-21
  • 录用日期:  2021-12-08
  • 网络出版日期:  2022-04-18

目录

    /

    返回文章
    返回