Satellite observed shape-based overall rotation—A new aspect in eddy kinematics

Xueqing Yang Guiyan Han Chunyong Ma Chuanchuan Cao Jie Yang Ge Chen

Xueqing Yang, Guiyan Han, Chunyong Ma, Chuanchuan Cao, Jie Yang, Ge Chen. Satellite observed shape-based overall rotation—A new aspect in eddy kinematics[J]. Acta Oceanologica Sinica, 2022, 41(5): 183-194. doi: 10.1007/s13131-021-1970-4
Citation: Xueqing Yang, Guiyan Han, Chunyong Ma, Chuanchuan Cao, Jie Yang, Ge Chen. Satellite observed shape-based overall rotation—A new aspect in eddy kinematics[J]. Acta Oceanologica Sinica, 2022, 41(5): 183-194. doi: 10.1007/s13131-021-1970-4

doi: 10.1007/s13131-021-1970-4

Satellite observed shape-based overall rotation—A new aspect in eddy kinematics

Funds: The National Natural Science Foundation of China under contract No. 42030406; the Wenhai Program of the S&T Fund of Shandong Province for the Pilot National Laboratory for Marine Science and Technology (Qingdao) under contract No. 2021WHZZB1501; the Marine S&T Fund of Shandong Province for the Pilot National Laboratory for Marine Science and Technology (Qingdao) under contract No. 2022QNLM050301-1.
More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  Time series of eddy shape (solid line) for an anticyclonic eddy with a lifetime of 1 641 d in the Pacific Ocean during 4 October 2001−2 January 2002. T0 is the initial day, and the time interval is 10 d. The dashed line in each panel denotes the best-fit ellipse to the eddy boundary.

    Figure  2.  Schematic diagrams of the definition of SOER, internal circulation and migration. ∠θ1=∠β−∠α, ∠θ2=∠γ−∠β.

    Figure  3.  Flow chart of the algorithm used to extract shape-based overall eddy rotation (SOER) features.

    Figure  4.  Global mean of the geometric correlation of the eddy shape as a function of normalized lifetime.

    Figure  5.  Evolutions of quarterly averaged contours of six LAEs (longest anticyclonic eddies) and LCEs (longest cyclonic eddies) during 1993–2018. a. 6 January 2003–9 December 2008 (2 165 d), c. 6 June 2003–6 March 2008 (1 736 d), e. 19 April 1999–15 October 2003 (1 641 d), g. 8 October 2005–19 October 2009 (1 473 d), i. 3 January 2011–07 November 2013 (1 040 d), and k. 27 April 2012–18 August 2014 (844 d). Blue/DJF, green/MAM, red/JJA and yellow/SON lines represent the periods of December–January–February, March–April–May, June–July–August, and September–October–November, respectively. The light blue curves represent the trajectories of the two eddies, while the solid white arrows indicate their propagation directions. The vertical hollow white arrows indicate the locations where a new overall rotation cycle is started by the eddy orientations. b, d, f, h, j and l. Accumulated angle of the overall rotation of the eddy orientations corresponding to a, c, e, g, i and k, respectively, as represented by the monthly mean orientation of the major axis of the best-fit ellipses. Also overlaid are the timings of the 0°, 90°, 180°, and 270° orientations of the corresponding eddy (the blue, green, red, and yellow vertical dashed lines).

    Figure  6.  Rotational speed (a) and rotation cycle (b) as a function of eddy lifetime.

    Figure  7.  Geographical distribution of rotational speed. EP and WP represent eddies propagating eastward and westward, respectively.

    Figure  8.  Rotational speed as a function of latitude.

    Figure  9.  Scatter diagrams of eddy circulation speed (a–c) and migration speed (d–f) versus rotational speed during 1993–2018, respectively. An average curve is overlaid on each panel (white line). Panels g and h are the average circulation speed and average migration speed as a function of eddy rotational speed for short-lived, medium-lived and long-lived oceanic eddies, corresponding to each white line in Panels a–h, respectively.

    Figure  10.  Geographical distribution of eddy migration speed. Note that EP and WP represent eddies propagating eastward and westward, respectively.

    Figure  11.  Geographical distribution of eddy circulation speed. EP and WP represent eddies propagating eastward and westward, respectively.

    Table  1.   Properties of long-lived eddies in Fig. 5

    Correspondhg figureTypeLifetime
    /d
    OriginateTerminateMigration directionMigration
    distance/km
    Fig. 5aAE2 16559.1°N, 143°W; 6 Jan. 200346.6°N, 172.0°W; 9 Dec. 2008westward5 657.5
    Fig. 5cAE1 73638.4°S, 121.1°E; 6 Jun. 200327.7°S, 70.3°E; 6 Mar. 2008westward6 662.5
    Fig. 5eCE1 64128.8°N, 18.2°W; 19 Apr. 199930.4°N, 58.3°W; 15 Oct. 2003westward6 231.3
    Fig. 5gCE1 47327.8°S, 113.2°E; 8 Oct. 200536.4°S, 73.6°E; 19 Oct. 2009westward5 498.8
    Fig. 5iAE1 04057.4°S, 135.3°E; 3 Jan. 201159.4°S, 143.9°E; 7 Nov. 2013eastward1 894.3
    Fig. 5kCE84457.0°S, 20.5°W; 27 Apr. 201256.4°S, 12.0°W; 18 Aug. 2014eastward1 609.7
    下载: 导出CSV

    Table  2.   Categorized statistics of shape-based overall eddy rotation (SOER) direction by lifetime, polarity and hemisphere

    TypeLoationRotating dirctionShort-lived eddiesMedium-lived eddiesLong-lived eddiesAll eddies
    NumberPercentage/%NumberPercentage/%NumberPercentage/%NumberPercentage/%
    AENHCW113 62549.5767 21157.0996087.83181 79652.23
    ACW115 59650.4350 52442.9113312.17166 25347.77
    SHCW134 95646.9680 42640.0023412.41215 61643.97
    ACW152 42653.04120 63860.001 65287.59274 71656.03
    CENHCW113 48947.8853 63542.8111818.15167 24246.08
    ACW123 54152.1271 63857.1953281.85195 71153.92
    SHCW143 60949.84120 74357.741 50583.89265 85753.27
    ACW144 54350.1688 37542.2628916.11233 20746.73
    Note: SH, southern hemisphere; NH, northern hemisphere; ACW, anti-clockwise; CW, clockwise.
    下载: 导出CSV

    Table  3.   Categorized statistics of shape-based overall eddy rotation (SOER) direction by lifetime, polarity and propagation direction

    TypePropagating
    direction
    Rotating
    dirction
    Short-lived eddiesMedium-lived eddiesLong-lived eddiesAll eddies
    NumberPercentage/%NumberPercentage/%NumberPercentage/%NumberPercentage/%
    AEWPCW173 06248.06107 28247.091 03339.62281 37747.65
    ACW187 03151.94120 56352.911 57460.38309 16852.35
    EPCW75 51948.2540 35544.3716143.28116 03546.82
    ACW80 99151.7550 59955.6321156.72131 80153.18
    CEWPCW175 99748.71121 03650.831 27364.07298 30649.60
    ACW185 30151.29117 10049.1771435.93303 11550.40
    EPCW81 10149.4953 34255.4235076.59134 79351.72
    ACW82 78350.5142 91344.5810723.41125 80348.28
    Note: ACW, anti-clockwise; CW, clockwise. EP and WP represent eddies propagating eastward and westward, respectively.
    下载: 导出CSV
  • [1] Chelton D B, Gaube P, Schlax M G, et al. 2011a. The influence of nonlinear mesoscale eddies on near-surface oceanic chlorophyll. Science, 334(6054): 328–332. doi: 10.1126/science.1208897
    [2] Chelton D B, Schlax M G, Samelson R M. 2011b. Global observations of nonlinear mesoscale eddies. Progress in Oceanography, 91(2): 167–216. doi: 10.1016/j.pocean.2011.01.002
    [3] Chelton D B, Schlax M G, Samelson R M, et al. 2007. Global observations of large oceanic eddies. Geophysical Research Letters, 34(15): L15606
    [4] Chen Ge, Han Guiyan. 2019. Contrasting short-lived with long-lived mesoscale eddies in the global ocean. Journal of Geophysical Research: Oceans, 124(5): 3149–3167. doi: 10.1029/2019JC014983
    [5] Chen Ge, Han Guiyan, Yang Xueqing. 2019. On the intrinsic shape of oceanic eddies derived from satellite altimetry. Remote Sensing of Environment, 228: 75–89. doi: 10.1016/j.rse.2019.04.011
    [6] Dong Changming, McWilliams J C, Liu Yu, et al. 2014. Global heat and salt transports by eddy movement. Nature Communications, 5(1): 3294. doi: 10.1038/ncomms4294
    [7] Dufau C, Orsztynowicz M, Dibarboure G, et al. 2016. Mesoscale resolution capability of altimetry: present and future. Journal of Geophysical Research: Oceans, 121(7): 4910–4927. doi: 10.1002/2015JC010904
    [8] Early J J, Samelson R M, Chelton D B. 2011. The evolution and propagation of quasigeostrophic ocean eddies. Journal of Physical Oceanography, 41(8): 1535–1555. doi: 10.1175/2011JPO4601.1
    [9] Faghmous J H, Frenger I, Yao Yuanshun, et al. 2015. A daily global mesoscale ocean eddy dataset from satellite altimetry. Scientific Data, 2(1): 150028. doi: 10.1038/sdata.2015.28
    [10] Fernandes A M. 2009. Study on the automatic recognition of oceanic eddies in satellite images by ellipse center detection—the Iberian coast case. IEEE Transactions on Geoscience and Remote Sensing, 47(8): 2478–2491. doi: 10.1109/TGRS.2009.2014155
    [11] Frenger I, Gruber N, Knutti R, et al. 2013. Imprint of Southern Ocean eddies on winds, clouds and rainfall. Nature Geoscience, 6(8): 608–612. doi: 10.1038/ngeo1863
    [12] Fu L L, Chelton D B, Le Traon P Y, et al. 2010. Eddy dynamics from satellite altimetry. Oceanography, 23(4): 14–25. doi: 10.5670/oceanog.2010.02
    [13] Gruber N, Lachkar Z, Frenzel H, et al. 2011. Eddy-induced reduction of biological production in eastern boundary upwelling systems. Nature Geoscience, 4(11): 787–792. doi: 10.1038/ngeo1273
    [14] Jayne S R, Marotzke J. 2002. The oceanic eddy heat transport. Journal of Physical Oceanography, 32(12): 3328–3345. doi: 10.1175/1520-0485(2002)032<3328:TOEHT>2.0.CO;2
    [15] Le Vu B, Stegner A, Arsouze T. 2018. Angular Momentum Eddy Detection and tracking Algorithm (AMEDA) and its application to coastal eddy formation. Journal of Atmospheric and Oceanic Technology, 35(4): 739–762. doi: 10.1175/JTECH-D-17-0010.1
    [16] Liu Yingjie, Chen Ge, Sun Miao, et al. 2016. A parallel SLA-based algorithm for global mesoscale eddy identification. Journal of Atmospheric and Oceanic Technology, 33(12): 2743–2754. doi: 10.1175/JTECH-D-16-0033.1
    [17] Mason E, Pascual A, McWilliams J C. 2014. A new sea surface height–based code for oceanic mesoscale eddy tracking. Journal of Atmospheric and Oceanic Technology, 31(5): 1181–1188. doi: 10.1175/JTECH-D-14-00019.1
    [18] Sun Miao, Tian Fenglin, Liu Yingjie, et al. 2017. An improved automatic algorithm for global eddy tracking using satellite altimeter data. Remote Sensing, 9(3): 206. doi: 10.3390/rs9030206
    [19] Tamarin T, Maddison J R, Heifetz E, et al. 2016. A geometric interpretation of eddy Reynolds stresses in barotropic ocean jets. Journal of Physical Oceanography, 46(8): 2285–2307. doi: 10.1175/JPO-D-15-0139.1
    [20] Waterman S, Lilly J M. 2015. Geometric decomposition of eddy feedbacks in barotropic systems. Journal of Physical Oceanography, 45(4): 1009–1024. doi: 10.1175/JPO-D-14-0177.1
    [21] Yi Jiawei, Liu Zhang, Du Yunyan, et al. 2014. A Gaussian-surface-based approach to identifying oceanic multi-eddy structures from satellite altimeter datasets. In: Proceedings of the 22nd International Conference on Geoinformatics. Kaohsiung, China: IEEE,1–5
    [22] Zhang Zhengguang, Qiu Bo, Klein P, et al. 2019. The influence of geostrophic strain on oceanic ageostrophic motion and surface chlorophyll. Nature Communications, 10(1): 2838. doi: 10.1038/s41467-019-10883-w
    [23] Zhang Zhengguang, Wang Wei, Qiu Bo. 2014. Oceanic mass transport by mesoscale eddies. Science, 345(6194): 322–324. doi: 10.1126/science.1252418
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  200
  • HTML全文浏览量:  51
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-22
  • 录用日期:  2021-10-02
  • 网络出版日期:  2022-04-02
  • 刊出日期:  2022-05-31

目录

    /

    返回文章
    返回