Contrasting behaviors of 210Po, 210Pb and 234Th in the East China Sea during a severe red tide: enhanced scavenging and promoted fractionation

Qiangqiang Zhong Linwei Li Viena Puigcorbé Dekun Huang Tao Yu Jinzhou Du

Qiangqiang Zhong, Linwei Li, Viena Puigcorbé, Dekun Huang, Tao Yu, Jinzhou Du. Contrasting behaviors of 210Po, 210Pb and 234Th in the East China Sea during a severe red tide: enhanced scavenging and promoted fractionation[J]. Acta Oceanologica Sinica. doi: 10.1007/s13131-021-1958-0
Citation: Qiangqiang Zhong, Linwei Li, Viena Puigcorbé, Dekun Huang, Tao Yu, Jinzhou Du. Contrasting behaviors of 210Po, 210Pb and 234Th in the East China Sea during a severe red tide: enhanced scavenging and promoted fractionation[J]. Acta Oceanologica Sinica. doi: 10.1007/s13131-021-1958-0

doi: 10.1007/s13131-021-1958-0

Contrasting behaviors of 210Po, 210Pb and 234Th in the East China Sea during a severe red tide: enhanced scavenging and promoted fractionation

Funds: The Science Research Foundation of the Third Institute of Oceanography, Ministry of Natural Resources under contract Nos 2017017 and 2019004; the China Postdoctoral Science Foundation under contract No. 2021M693780; the Foundation of Xiamen Institute of Marine Development under contract No. K201301; the Science and Technology Plan Projects of Guangxi Zhuang Autonomous Region under contract No. 2017AB30024.
More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
  • Figure  1.  Map showing the locations of the stations in the Changjiang River and East China Sea in July 2016 (a). Red stars are four stations where radionuclides were measured, with two stations (A1-5 and A3-9) affected by algal blooms (b), and two no-bloom stations (A6-11 and A8-7) (c). The regional currents during summer are included: Changjiang Dilute water (CDW), Zhejiang-Fujian Coast Current (ZFCC), Yellow Sea Coastal Current (YSCC) and Taiwan Warm Current (TWC). Black dots in red dashed boxes represent the locations where algal blooms were observed.

    Figure  2.  Vertical distribution plots of temperature (°C) (a) and salinity (b) along the defined section of the East China Sea off the Changjiang River Estuary in July 2016.

    Figure  3.  Profiles of concentrations of DO and Chl a, contents of TSM and POC in four stations. Horizontal gray line denotes seafloor.

    Figure  4.  Relationships between POC and TSM (a), POC and PN (b), POC and Chl a (c), POC and five nutrients (NO3- (e), NO2- (f), NH4+ (g), PO43- (h), SiO32- (i)) and between PN and Chl a (d) during algal blooming in July 2016. The dotted lines indicate the correlation between the two parameters and the equation is presented in the corresponding panel. Red symbols indicate outliers of the general trend due to particularities of those specific samples, as described in each graphic.

    Figure  5.  Variations of stable organic carbon isotopic ratio (δ13C) and organic carbon and nitrogen ratio (POC/PN ratio) in particles collected in bloom (green) and non-bloom (blue) stations.

    Figure  6.  210Po, 210Pb, and 234Th activity profiles for the dissolved (D, black squares), particulate (P, red dots), and total (dissolved+particulate; T, blue triangles) phases. Horizonal line indicated the bottom depth.

    Figure  7.  Relationships between POC content and particulate 210Po, 210Pb and 234Th activity in surface (black squares), middle (red dots), and bottom (blue triangles) waters.

    Figure  8.  Profiles of the POC/TSM ratio (a) and mass specific activities of 210Po (b), 210Pb (c), and 234Th (d) at the four stations. The green highlighted regions represent the peaks of mass specific activity of 210Po, 210Pb and 234Th in water columns.

    Figure  9.  Relationships between the variation in the distribution coefficient (LogKd in mL/g) for 210Po, 210Pb, and 234Th and the particle content (LogTSM in mg/L) (a) and organic carbon content in TSM (b).

    Figure  10.  Fractionation factors of 210Po to 210Pb (a), 210Po to 234Th (b) and 210Pb to 234Th (c) at the four sampling stations.

    Figure  11.  The ratios of POC content to 210Po, 210Pb, and 234Th activities in the particulate samples.

    Figure  12.  POC/210Po vs. POC/210Pb (a) and POC/210Po vs. POC/234Th (b) in the particulate samples. Data enclosed in black ellipse represent samples collected from surface layers at algal blooming stations. Data enclosed in blue ellipse represent fecal pellets or resuspended particulate matters. The red dashed lines indicate the 1:1 line.

    Table  1.   Vertical profiles of dissolved and particulate 210Po, 210Pb and 234Th activities, activity ratios of dissolved fraction vs. total, total suspended matter (TSM), particulate organic carbon (POC) and particulate nitrogen (PN) and δ13C

    $\text{δ} $13C/‰
    A1-510.57 ± 0.201.13 ± 0.083411.9 ± 1.351.67 ± 0.158817.7 ± 0.834.17 ± 0.178110.3140.821.7−21.8
    60.75 ± 0.170.90 ± 0.054611.5 ± 1.121.30 ± 0.12908.00 ± 0.332.17 ± 0.17787.3101.815.0−21.5
    150.77 ± 0.081.32 ± 0.08374.57 ± 0.352.98 ± 0.27618.67 ± 0.501.00 ± 0.17884.840.28.9−21.4
    300.88 ± 0.252.57 ± 0.172616.7 ± 1.833.40 ± 0.30839.33 ± 0.503.83 ± 0.33709.237.915.7−18.9
    A3-910.55 ± 0.100.75 ± 0.05437.10 ± 0.671.85 ± 0.157911.7 ± 0.671.17 ± 0.17905.297.815.6−19.2
    61.02 ± 0.170.73 ± 0.05598.07 ± 0.821.73 ± 0.158212.3 ± 0.672.50 ± 0.17832.591.615.0−20.4
    150.62 ± 0.150.90 ± 0.084112.6 ± 1.222.47 ± 0.30848.67 ± 0.503.67 ± 0.33701.434.17.3−22.0
    300.72 ± 0.051.05 ± 0.07413.48 ± 0.252.08 ± 0.20638.83 ± 0.502.17 ± 0.17807.633.25.0−22.4
    450.90 ± 0.131.55 ± 0.08378.02 ± 0.732.40 ± 0.237710.3 ± 0.509.17 ± 0.50534.425.56.3−21.3
    A6-1110.77 ± 0.050.43 ± 0.03644.08 ± 0.370.48 ± 0.07898.33 ± 0.339.33 ± 0.50472.417.44.1−24.1
    60.73 ± 0.050.27 ± 0.02744.12 ± 0.320.52 ± 0.058915.2 ± 0.673.83 ± 0.17802.911.35.7−23.6
    150.55 ± 0.050.32 ± 0.02645.55 ± 0.430.72 ± 0.078910.5 ± 0.505.67 ± 0.33650.510.83.1−18.6
    300.55 ± 0.080.63 ± 0.034713.1 ± 1.450.65 ± 0.08956.67 ± 0.333.50 ± 0.17650.311.54.1−17.6
    450.88 ± 0.050.90 ± 0.05502.27 ± 0.171.23 ± 0.156510.3 ± 0.508.67 ± 0.50543.110.55.7−20.6
    A8-710.82 ± 0.070.20 ± 0.02801.92 ± 0.170.40 ± 0.05837.00 ± 0.331.83 ± 0.17801.315.03.7−23.3
    60.93 ± 0.080.30 ± 0.02763.18 ± 0.270.42 ± 0.05897.33 ± 0.332.67 ± 0.17741.4NANA−20.1
    151.00 ± 0.150.30 ± 0.02774.90 ± 0.470.50 ± 0.05916.50 ± 0.173.50 ± 0.17651.713.73.7−23.7
    301.33 ± 0.150.43 ± 0.03764.83 ± 0.480.58 ± 0.078911.2 ± 0.507.50 ± 0.33600.97.91.9−21.2
    450.72 ± 0.080.37 ± 0.03673.68 ± 0.320.68 ± 0.05847.83 ± 0.335.67 ± 0.33581.419.65.7−21.6
    701.03 ± 0.072.25 ± 0.10322.37 ± 0.222.13 ± 0.255312.8 ± 0.6710.7 ± 0.505411.611.64.2−21.6
    Note: T, D and P denotes total, dissolved, and particulate phases, respectively; NA denotes data not available; Errors are 1 sigma values based on counting uncertainties.
    下载: 导出CSV

    Table  2.   Comparison of activities (average±SD) of radionuclides (210Po, 210Pb and 234Th), 210Po/210Pb and 234Th/238U activity ratios between bloom and non-bloom stations

    Bq m-3Bq m-3
    Bloom (n=9)0.77 ± 0.171.22 ± 0.589.3 ± 4.22.20 ± 0.6710.7 ± 3.03.3 ± 2.50.10 ± 0.060.55 ± 0.150.19 ± 0.070.48 ± 0.22
    Non-bloom (n=11)0.85 ± 0.230.58 ± 0.584.5 ± 3.00.75 ± 0.529.5 ± 2.85.7 ± 3.00.25 ± 0.130.70 ± 0.210.32 ± 0.180.43 ± 0.14
    Note: D refers to dissolved fraction and P to particulate fraction; n denotes the sample number in entire water columns.
    下载: 导出CSV

    Table  3.   Range and mean values of the mass specific activity of 210Po, 210Pb and 234Th in particles

    210Po/ (Bq·g-1)210Pb/ (Bq·g-1)234Th/ (Bq·g-1)
    TSM in surface waters0.163±0.0620.088-0.2960.297±0.1680.162-0.7051.30±1.110.238-3.87
    TSM in middle waters0.635±0.7200.138-2.4701.010±0.7640.273-2.515.40±4.940.242-13.8
    TSM in bottom waters0.277±0.0550.194-0.3500.373±0.1280.183-0.5441.56±0.9310.431-2.79
    Note: NA denotes data not available.
    下载: 导出CSV
  • [1] Anderson D M, Cembella A D, Hallegraeff G M. 2012. Progress in understanding harmful algal blooms: paradigm shifts and new technologies for research, monitoring, and management. Annual Review of Marine Science, 4: 143–176. doi: 10.1146/annurev-marine-120308-081121
    [2] Bacon M P, Belastock R A, Tecotzky M, et al. 1988. Lead-210 and polonium-210 in ocean water profiles of the continental shelf and slope south of New England. Continental Shelf Research, 8(5–7): 841–853. doi: 10.1016/0278-4343(88)90079-9
    [3] Bacon M P, Spencer D W, Brewer P G. 1976. 210Pb/226Ra and 210Po/210Pb disequilibria in seawater and suspended particulate matter. Earth and Planetary Science Letters, 32(2): 277–296. doi: 10.1016/0012-821X(76)90068-6
    [4] Baskaran M, Church T, Hong G, et al. 2013. Effects of flow rates and composition of the filter, and decay/ingrowth correction factors involved with the determination of in situ particulate 210Po and 210Pb in seawater. Limnology and Oceanography:Methods, 11(3): 126–138. doi: 10.4319/lom.2013.11.126
    [5] Baskaran M, Santschi P H. 1993. The role of particles and colloids in the transport of radionuclides in coastal environments of Texas. Marine Chemistry, 43(1–4): 95–114. doi: 10.1016/0304-4203(93)90218-D
    [6] Baskaran M, Santschi P H, Benoit G, et al. 1992. Scavenging of thorium isotopes by colloids in seawater of the Gulf of Mexico. Geochimica et Cosmochimica Acta, 56(9): 3375–3388. doi: 10.1016/0016-7037(92)90385-V
    [7] Benitez-Nelson C R, Buesseler K O, van der Loeff M R, et al. 2001. Testing a new small-volume technique for determining 234Th in seawater. Journal of Radioanalytical and Nuclear Chemistry, 248(3): 795–799. doi: 10.1023/A:1010621618652
    [8] Benoit G, Hemond H F. 1990. Polonium-210 and lead-210 remobilization from lake sediments in relation to iron and manganese cycling. Environmental Science & Technology, 24(8): 1224–1234
    [9] Bi Qianqian. 2013. The disequilibrium of 234Th/238U and 210Po/210Pb in the Changjiang estuary and adjacent sea: a case of tracing the export of particulate organic carbon (in Chinese)[dissertation]. Shanghai, China: East China Normal University
    [10] Buesseler K O, Bacon M P, Cochran J K, et al. 1992. Carbon and nitrogen export during the JGOFS North Atlantic Bloom experiment estimated from 234Th: 238U disequilibria. Deep-Sea Research Part A. Oceanographic Research Papers, 39(7-8): 1115–1137
    [11] Buesseler K O, Benitez-Nelson C R, Moran S B, et al. 2006. An assessment of particulate organic carbon to thorium-234 ratios in the ocean and their impact on the application of 234Th as a POC flux proxy. Marine Chemistry, 100(3–4): 213–233. doi: 10.1016/j.marchem.2005.10.013
    [12] Cai Pinghe, Chen Weifang, Dai Minhan, et al. 2008. A high-resolution study of particle export in the southern South China Sea based on 234Th: 238U disequilibrium. Journal of Geophysical Research:Oceans, 113(C4): C04019. doi: 10.1029/2007JC004268
    [13] Cai Pinghe, Dai Minhan, Lv Dongwei, et al. 2006. An improvement in the small-volume technique for determining thorium-234 in seawater. Marine Chemistry, 100(3–4): 282–288. doi: 10.1016/j.marchem.2005.10.016
    [14] Carvalho F P. 1997. Distribution, cycling and mean residence time of 226Ra, 210Pb and 210Po in the Tagus estuary. Science of the Total Environment, 196(2): 151–161. doi: 10.1016/S0048-9697(96)05416-2
    [15] Carvalho F P, Oliveira J M, Alberto G. 2011. Factors affecting 210Po and 210Pb activity concentrations in mussels and implications for environmental bio-monitoring programmes. Journal of Environmental Radioactivity, 102(2): 128–137. doi: 10.1016/j.jenvrad.2010.11.003
    [16] Chen Jinfang, Luo Shangde, Huang Yipu. 2016. Scavenging and fractionation of particle-reactive radioisotopes 7Be, 210Pb and 210Po in the atmosphere. Geochimica et Cosmochimica Acta, 188: 208–223. doi: 10.1016/j.gca.2016.05.039
    [17] Dickson B L, Herczeg A L. 1992. Naturally-occurring radionuclides in acid-Saline groundwaters around Lake Tyrrell, Victoria, Australia. Chemical Geology, 96(1-2): 95–114. doi: 10.1016/0009-2541(92)90123-M
    [18] Du Juan, Du Jinzhou, Baskaran M, et al. 2015. Temporal variations of atmospheric depositional fluxes of 7Be and 210Pb over 8 years (2006–2013) at Shanghai, China, and synthesis of global fallout data. Journal of Geophysical Research: Atmospheres, 120(9): 4323–4339. doi: 10.1002/2014JD022807
    [19] Field C B, Behrenfeld M J, Randerson J T, et al. 1998. Primary production of the biosphere: integrating terrestrial and oceanic components. Science, 281(5374): 237–240. doi: 10.1126/science.281.5374.237
    [20] Fisher N S, Burns K A, Cherry R D, et al. 1983. Accumulation and cellular distribution of 241Am, 210Po and 210Pb in two marine algae. Marine Ecology-Progress Series, 11: 233–237. doi: 10.3354/meps011233
    [21] Friedrich J, van der Loeff M M R. 2002. A two-tracer (210Po-234Th) approach to distinguish organic carbon and biogenic silica export flux in the Antarctic Circumpolar Current. Deep-Sea Research Part I:Oceanographic Research Papers, 49(1): 101–120. doi: 10.1016/S0967-0637(01)00045-0
    [22] Gao Lei, Li Daoji, Ishizaka J. 2014. Stable isotope ratios of carbon and nitrogen in suspended organic matter: seasonal and spatial dynamics along the Changjiang (Yangtze River) transport pathway. Journal of Geophysical Research:Biogeosciences, 119(8): 1717–1737. doi: 10.1002/2013JG002487
    [23] Gao Lei, Li Daoji, Ishizaka J, et al. 2015. Nutrient dynamics across the river-sea interface in the Changjiang (Yangtze River) estuary-East China Sea region. Limnology and Oceanography, 60(6): 2207–2221. doi: 10.1002/lno.10196
    [24] Garcia-Orellana J, Rodellas V, Casacuberta N, et al. 2013. Submarine groundwater discharge: natural radioactivity accumulation in a wetland ecosystem. Marine Chemistry, 156: 61–72. doi: 10.1016/j.marchem.2013.02.004
    [25] Guo Laodong, Santschi P H, Baskaran M. 1997. Interactions of thorium isotopes with colloidal organic matter in oceanic environments. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 120(1-3): 255–271
    [26] Harada K, Burnett W C, LaRock P A, et al. 1989. Polonium in Florida groundwater and its possible relationship to the sulfur cycle and bacteria. Geochimica et Cosmochimica Acta, 53(1): 143–150. doi: 10.1016/0016-7037(89)90281-0
    [27] Honeyman B D, Santschi P H. 1989. A Brownian-pumping model for oceanic trace metal scavenging: evidence from Th isotopes. Journal of Marine Research, 47(4): 951–992. doi: 10.1357/002224089785076091
    [28] Hong G H, Park S K, Baskaran M, et al. 1999. Lead-210 and polonium-210 in the winter well-mixed turbid waters in the mouth of the Yellow Sea. Continental Shelf Research, 19(8): 1049–1064. doi: 10.1016/S0278-4343(99)00011-4
    [29] Huang Dekun, Du Jinzhou, Moore W S, et al. 2013. Particle dynamics of the Changjiang Estuary and adjacent coastal region determined by natural particle-reactive radionuclides (7Be, 210Pb, and 234Th). Journal of Geophysical Research:Oceans, 118(4): 1736–1748. doi: 10.1002/jgrc.20148
    [30] Jiang Zhibing, Chen Jianfang, Zhou Feng, et al. 2017. Summer distribution patterns of Trichodesmium spp. in the Changjiang (Yangtze River) Estuary and adjacent East China Sea shelf. Oceanologia, 59(3): 248–261. doi: 10.1016/j.oceano.2017.02.001
    [31] Jones P, Maiti K, McManus J. 2015. Lead-210 and Polonium-210 disequilibria in the northern Gulf of Mexico hypoxic zone. Marine Chemistry, 169: 1–15. doi: 10.1016/j.marchem.2014.12.007
    [32] Jweda J, Baskaran M, van Hees E, et al. 2008. Short-lived radionuclides (7Be and 210Pb) as tracers of particle dynamics in a river system in southeast Michigan. Limnology and Oceanography, 53(5): 1934–1944. doi: 10.4319/lo.2008.53.5.1934
    [33] Kim G, Kim S J, Harada K, et al. 2005. Enrichment of excess 210Po in anoxic ponds. Environmental Science & Technology, 39(13): 4894–4899
    [34] Kim T H, Kim G. 2012. Important role of colloids in the cycling of 210Po and 210Pb in the ocean: results from the East/Japan Sea. Geochimica et Cosmochimica Acta, 95: 134–142. doi: 10.1016/j.gca.2012.07.029
    [35] Kim Y, Yang H S. 2004. Scavenging of 234Th and 210Po in surface water of Jinhae Bay, Korea during a red tide. Geochemical Journal, 38(6): 505–513. doi: 10.2343/geochemj.38.505
    [36] Kipp L E, Charette M A, Moore W S, et al. 2018. Increased fluxes of shelf-derived materials to the central Arctic Ocean. Science Advance, 4(1): eaao1302. doi: 10.1126/sciadv.aao1302
    [37] Lepore K, Moran S B, Smith J N. 2009. 210Pb as a tracer of shelf-basin transport and sediment focusing in the Chukchi Sea. Deep-Sea Research Part II:Topical Studies in Oceanography, 56(17): 1305–1315. doi: 10.1016/j.dsr2.2008.10.021
    [38] Liu Sumei, Qi Xiaohong, Li Xiaona, et al. 2016. Nutrient dynamics from the Changjiang (Yangtze River) estuary to the East China Sea. Journal of Marine Systems, 154: 15–27. doi: 10.1016/j.jmarsys.2015.05.010
    [39] Marsan D, Rigaud S, Church T. 2014. Natural radionuclides 210Po and 210Pb in the Delaware and Chesapeake Estuaries: modeling scavenging rates and residence times. Journal of Environmental Radioactivity, 138: 447–455. doi: 10.1016/j.jenvrad.2014.08.014
    [40] Masqué P, Sanchez-Cabeza J A, Bruach J M, et al. 2002. Balance and residence times of 210Pb and 210Po in surface waters of the northwestern Mediterranean Sea. Continental Shelf Research, 22(15): 2127–2146. doi: 10.1016/S0278-4343(02)00074-2
    [41] Morel F M M, Price N M. 2003. The biogeochemical cycles of trace metals in the oceans. Science, 300(5621): 944–947. doi: 10.1126/science.1083545
    [42] Mudbidre R, Baskaran M, Schweitzer L. 2014. Investigations of the partitioning and residence times of Po-210 and Pb-210 in a riverine system in Southeast Michigan, USA. Journal of Environmental Radioactivity, 138: 375–383. doi: 10.1016/j.jenvrad.2014.01.007
    [43] Murray J W, Paul B, Dunne J P, et al. 2005. 234Th, 210Pb, 210Po and stable Pb in the central equatorial Pacific: tracers for particle cycling. Deep-Sea Research Part I:Oceanographic Research Papers, 52(11): 2109–2139. doi: 10.1016/j.dsr.2005.06.016
    [44] Nozaki Y, Tsubota H, Kasemsupaya V, et al. 1991. Residence times of surface water and particle-reactive 210Pb and 210Po in the East China and Yellow seas. Geochimica et Cosmochimica Acta, 55(5): 1265–1272. doi: 10.1016/0016-7037(91)90305-O
    [45] Owens S A, Buesseler K O, Sims K W W. 2011. Re-evaluating the 238U-salinity relationship in seawater: Implications for the 238U-234Th disequilibrium method. Marine Chemistry, 127(1–4): 31–39. doi: 10.1016/j.marchem.2011.07.005
    [46] Pike S M, Buesseler K O, Andrews J, et al. 2005. Quantification of 234Th recovery in small volume sea water samples by inductively coupled plasma-mass spectrometry. Journal of Radioanalytical and Nuclear Chemistry, 263(2): 355–360. doi: 10.1007/s10967-005-0594-z
    [47] Puigcorbé V, Benitez-Nelson C R, Masqué P, et al. 2015. Small phytoplankton drive high summertime carbon and nutrient export in the Gulf of California and Eastern Tropical North Pacific. Global Biogeochemical Cycles, 29(8): 1309–1332. doi: 10.1002/2015GB005134
    [48] Qi Lin, Tsai S F, Chen Yanlong, et al. 2019. In search of red Noctiluca scintillans blooms in the East China Sea. Geophysical Research Letters, 46(11): 5997–6004. doi: 10.1029/2019GL082667
    [49] Rigaud S, Puigcorbé V, Cámara-Mor P, et al. 2013. A methods assessment and recommendations for improving calculations and reducing uncertainties in the determination of 210Po and 210Pb activities in seawater. Limnology and Oceanography:Methods, 11(10): 561–571. doi: 10.4319/lom.2013.11.561
    [50] Roca-Martí M, Puigcorbé V, van der Loeff M M R, et al. 2016. Carbon export fluxes and export efficiency in the central Arctic during the record sea-ice minimum in 2012: a joint 234Th/238U and 210Po/210Pb study. Journal of Geophysical Research:Oceans, 121(7): 5030–5049. doi: 10.1002/2016JC011816
    [51] Ruberu S R, Liu Yungang, Perera S K. 2007. Occurrence and distribution of 210Pb and 210Po in selected California groundwater wells. Health Physics, 92(5): 432–441. doi: 10.1097/01.HP.0000254883.26386.9b
    [52] Santschi P H, Guo L, Walsh I D, et al. 1999. Boundary exchange and scavenging of radionuclides in continental margin waters of the Middle Atlantic Bight: implications for organic carbon fluxes. Continental Shelf Research, 19(5): 609–636. doi: 10.1016/S0278-4343(98)00103-4
    [53] Santschi P H, Li Yuanhui, Bell J. 1979. Natural radionuclides in the water of Narragansett Bay. Earth and Planetary Science Letters, 45(1): 201–213. doi: 10.1016/0012-821X(79)90121-3
    [54] Shimmield G B, Ritchie G D, Fileman T W. 1995. The impact of marginal ice zone processes on the distribution of 21OPo, 21OPb and 234Th and implications for new production in the Bellingshausen Sea, Antarctica. Deep-Sea Research Part II: Topical Studies in Oceanography, 42(4-5): 1313–1335. doi: 10.1016/0967-0645(95)00071-W
    [55] Stewart G, Cochran J K, Miquel J C, et al. 2007. Comparing POC export from 234Th/238U and 210Po/210Pb disequilibria with estimates from sediment traps in the northwest Mediterranean. Deep-Sea Research Part I:Oceanographic Research Papers, 54(9): 1549–1570. doi: 10.1016/j.dsr.2007.06.005
    [56] Stewart G M, Fisher N S. 2003. Experimental studies on the accumulation of polonium-210 by marine phytoplankton. Limnology and Oceanography, 48(3): 1193–1201. doi: 10.4319/lo.2003.48.3.1193
    [57] Stewart G M, Fowler S W, Teyssié J L, et al. 2005. Contrasting transfer of polonium-210 and lead-210 across three trophic levels in marine plankton. Marine Ecology Progress Series, 290: 27–33. doi: 10.3354/meps290027
    [58] Stewart G, Moran S B, Lomas M W, et al. 2011. Direct comparison of 210Po, 234Th and POC particle-size distributions and export fluxes at the Bermuda Atlantic Time-series Study (BATS) site. Journal of Environmental Radioactivity, 102(5): 479–489. doi: 10.1016/j.jenvrad.2010.09.011
    [59] Su Jilan. 2001. A review of circulation dynamics of the coastal oceans near China. Haiyang Xuebao, 23(4): 1–16
    [60] Su Kaijun, Du Jinzhou, Baskaran M, et al. 2017. 210Po and 210Pb disequilibrium at the PN section in the East China Sea. Journal of Environmental Radioactivity, 174: 54–65. doi: 10.1016/j.jenvrad.2016.07.031
    [61] Tang Yi, Lemaitre N, Castrillejo M, et al. 2019. The export flux of particulate organic carbon derived from 210Po/210Pb disequilibria along the North Atlantic GEOTRACES GA01 transect: GEOVIDE cruise. Biogeosciences, 16(2): 309–327. doi: 10.5194/bg-16-309-2019
    [62] Tang Yi, Stewart G, Lam P J, et al. 2017. The influence of particle concentration and composition on the fractionation of 210Po and 210Pb along the North Atlantic GEOTRACES transect GA03. Deep-Sea Research Part I:Oceanographic Research Papers, 128: 42–54. doi: 10.1016/j.dsr.2017.09.001
    [63] Twining B S, Rauschenberg S, Morton P L, et al. 2015. Metal contents of phytoplankton and labile particulate material in the North Atlantic Ocean. Progress in Oceanography, 137: 261–283. doi: 10.1016/j.pocean.2015.07.001
    [64] Uddin S, Behbehani M, Al-Ghadban A N, et al. 2018. 210Po concentration in selected diatoms and dinoflagellates in the northern Arabian Gulf. Marine Pollution Bulletin, 129(1): 343–346. doi: 10.1016/j.marpolbul.2018.02.051
    [65] Verdeny E, Masqué P, Garcia-Orellana J, et al. 2009. POC export from ocean surface waters by means of 234Th/238U and 210Po/210Pb disequilibria: a review of the use of two radiotracer pairs. Deep-Sea Research Part II:Topical Studies in Oceanography, 56(18): 1502–1518. doi: 10.1016/j.dsr2.2008.12.018
    [66] Wang Kui, Chen Jianfang, Jin Haiyan, et al. 2018a. Organic matter degradation in surface sediments of the Changjiang estuary: evidence from amino acids. Science of the Total Environment, 637–638: 1004–1013
    [67] Wang Jinlong, Du Jinzhou, Baskaran M, et al. 2016. Mobile mud dynamics in the East China Sea elucidated using 210Pb, 137Cs, 7Be, and 234Th as tracers. Journal of Geophysical Research:Oceans, 121(1): 224–239. doi: 10.1002/2015JC011300
    [68] Wang Jinlong, Zhang Weiguo, Baskaran M, et al. 2018b. Fingerprinting sediment transport in river-dominated margins using combined mineral magnetic and radionuclide methods. Journal of Geophysical Research:Oceans, 123(8): 5360–5374. doi: 10.1029/2018JC014174
    [69] Wei C L, Chou L H, Tsai J R, et al. 2009. Comparative geochemistry of 234Th, 210Pb, and 210Po: a case study in the Hung-Tsai Trough off southwestern Taiwan. Terrestrial Atmospheric and Oceanic Sciences, 20(2): 411–423. doi: 10.3319/TAO.2008.01.09.01(Oc
    [70] Wei C L, Lin S Y, Wen L S, et al. 2012. Geochemical behavior of 210Pb and 210Po in the nearshore waters off western Taiwan. Marine Pollution Bulletin, 64(2): 214–220. doi: 10.1016/j.marpolbul.2011.11.031
    [71] Wei C L, Murray J W. 1994. The behavior of scavenged isotopes in marine anoxic environments: 210Pb and 210Po in the water column of the Black Sea. Geochimica et Cosmochimica Acta, 58(7): 1795–1811. doi: 10.1016/0016-7037(94)90537-1
    [72] Wildgust M A, McDonald P, White K N. 1998. Temporal changes of 210Po in temperate coastal waters. Science of the Total Environment, 214(1-3): 1–10. doi: 10.1016/S0048-9697(98)00050-3
    [73] Wu Y, Zhang J, Li D J, et al. 2003. Isotope variability of particulate organic matter at the PN section in the East China Sea. Biogeochemistry, 65(1): 31–49. doi: 10.1023/A:1026044324643
    [74] Zhang Shuwen, Liu Hongbin, Glibert P M, et al. 2017. Effects of prey of different nutrient quality on elemental nutrient budgets in Noctiluca scintillans. Scientific Reports, 7(1): 7622. doi: 10.1038/s41598-017-05991-w
    [75] Zhang J, Wu Y, Jennerjahn T C, et al. 2007. Distribution of organic matter in the Changjiang (Yangtze River) Estuary and their stable carbon and nitrogen isotopic ratios: implications for source discrimination and sedimentary dynamics. Marine Chemistry, 106(1–2): 111–126. doi: 10.1016/j.marchem.2007.02.003
    [76] Zhong Qiangqiang, Wang Jinlong, Du Jinzhou, et al. 2019. The 210Po/210Pb disequilibrium in a spring-blooming marginal sea, the Southern Yellow Sea. Journal of Environmental Radioactivity, 207: 15–26. doi: 10.1016/j.jenvrad.2019.05.017
    [77] Zhou Mingjiang, Yu Rencheng. 2007. Mechanisms and impacts of harmful algal blooms and the countmeasures. Chinese Journal of Nature, 29(2): 72–77
    [78] Zhou Zhengxi, Yu Rencheng, Zhou Mingjiang. 2017. Seasonal succession of microalgal blooms from diatoms to dinoflagellates in the East China Sea: a numerical simulation study. Ecological Modelling, 360: 150–162. doi: 10.1016/j.ecolmodel.2017.06.027
    [79] Zhu Wenzhuo, Zhang Jing, Yang Guipeng. 2018. Mixing behavior and photobleaching of chromophoric dissolved organic matter in the Changjiang River estuary and the adjacent East China Sea. Estuarine, Coastal and Shelf Science, 207: 422–434
    [80] Zuo Zhizheng, Eisma D. 1993. 210Pb and 210Po distributions and disequilibrium in the coastal and shelf waters of the southern North Sea. Continental Shelf Research, 13(8-9): 999–1022. doi: 10.1016/0278-4343(93)90020-X
  • 加载中
  • 文章访问数:  58
  • HTML全文浏览量:  22
  • 被引次数: 0
  • 收稿日期:  2021-09-29
  • 录用日期:  2021-11-18
  • 网络出版日期:  2022-04-26