Long-term trend of oceanic surface carbon in the Northwest Pacific from 1958 to 2017

Xuanliang Ji Fei Chai Peng Xiu Guimei Liu

Xuanliang Ji, Fei Chai, Peng Xiu, Guimei Liu. Long-term trend of oceanic surface carbon in the Northwest Pacific from 1958 to 2017[J]. Acta Oceanologica Sinica. doi: 10.1007/s13131-021-1953-5
Citation: Xuanliang Ji, Fei Chai, Peng Xiu, Guimei Liu. Long-term trend of oceanic surface carbon in the Northwest Pacific from 1958 to 2017[J]. Acta Oceanologica Sinica. doi: 10.1007/s13131-021-1953-5

doi: 10.1007/s13131-021-1953-5

Long-term trend of oceanic surface carbon in the Northwest Pacific from 1958 to 2017

Funds: The National Key Research and Development Program of China under contract No. 2016YFC1401605); Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) under contract No. SML2020SP008; the Open Fund of Marine Telemetry Technology Innovation Center of the Ministry of Natural Resources; the National Natural Science Foundation of China under contract No. 41730536.
More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
  • Figure  1.  Areas used for temporal analysis: a. modeled annual-mean temperature (°C), and b. modeled annual-mean oceanic surface pCO2 (μatm, 1 μatm=0.101 Pa).

    Figure  2.  Atmospheric CO2 set in Case 1 and Case 2. Black line: Case 1; Red line: Case 2. 1 μatm=0.101 Pa.

    Figure  3.  Comparison the model simulations and satellite observations. a. Sea surface temperature (SST), black line is modeled results, red line is satellite results. b. Oceanic surface pCO2, black curve line is modeled results, green dot is observed results. Black line is the variation trend line from model, green line is the variation trend line from observation. 1 μatm=0.101 Pa.

    Figure  4.  Decades variation of oceanic surface pCO2­. Modeled oceanic surface pCO2 (top), and observations of pCO2 from the SOCAT database (bottom). a, e: 1990s decade; b, f: 2000s decade; c, g: 2010s decade. 1 μatm=0.101 Pa.

    Figure  5.  Seasonal climatology of oceanic surface pCO2 from model. a. Winter (DJF, December–February); b. spring (MAM, March–May); c. summer (JJA, June–August); d. autumn (SON, September–November). 1 μatm=0.101 Pa.

    Figure  6.  Spatial distributions of long-term trend rate of change. a. for SST, b. for TCO2 under Case 1, c. for oceanic surface pCO2 under Case 1, d. for TCO2 under Case 2, and e. for oceanic surface pCO2 under Case 2, 1 μatm=0.101 Pa).

    Figure  7.  Spatial distributions of the long-term trend rate of change. a. for pCO2, b. for pCO2-SST (same distribution under Case 1 and Case 2), c. for pCO2-TCO2 under Case 1, and d. for pCO2-TCO2 under Case 2. 1μatm=0.101 Pa.

    Table  1.   Statistical indicators of model skill for SST and oceanic surface ocean pCO2 in northwestern Pacific Ocean box region

    Note: Total bias, correlation coefficient (Cor), RMSD and total number of effective observations (N) are also shown. ME, model efficiency; CF, cost function; PB, percentage of bias. Bold values indicate “Good” model skill. 1 μatm=0.101 Pa.
    下载: 导出CSV

    Table  2.   Long-term trend rates of change in SST, TCO2, and pCO2 in the WBS, WSA and KOM in winter and summer under Case 1 and Case 2

    Case 1/Case 2Case 1Case 2Case 1Case 2
    Note: The ± values are the standard deviations about the regional mean. — indicates no significant trend. For SST, no significant trend rate value is lower than 0.005 °C/a. For pCO2, it is lower than 0.1 μatm/a. 1 μatm=0.101 Pa.
    下载: 导出CSV

    Table  3.   The trend rate of δpCO2 in WBS, WSA and KOM three boxes during the period from 1958 to 2017 under experimental Case 2

    RegionSeason$\text{δ} $pCO2/(μatm·a–1)
    Note: The ± values are the standard deviations about the regional mean.1 μatm=0.101 Pa.
    下载: 导出CSV

    Table  4.   Trend rates of pCO2 under SST and TCO2 influences in the WBS, WSA and KOM in winter and summer under Case 1 and Case 2

    Case 1/Case 2Case 1Case 2
    Note: The ± values in the table are the standard deviations about the regional mean. — indicates no significant trend, whose value is lower than 0.1 μatm/a. 1 μatm=0.101 Pa.
    下载: 导出CSV
  • [1] Arruda R, Calil P H R, Bianchi A A, et al. 2015. Air-sea CO2 fluxes and the controls on ocean surface pCO2 seasonal variability in the coastal and open-ocean southwestern Atlantic Ocean: A modeling study. Biogeosciences, 12(19): 5793–5809. doi: 10.5194/bg-12-5793-2015
    [2] Bakker D C E, Pfeil B, Landa C S, et al. 2016. A multi-decade record of high-quality fCO₂ data in version 3 of the Surface Ocean CO₂ Atlas (SOCAT). Earth System Science Data, 8(2): 383–413. doi: 10.5194/essd-8-383-2016
    [3] Dabrowski T, Lyons K, Berry A, et al. 2014. An operational biogeochemical model of the North-East Atlantic: model description and skill assessment. Journal of Marine Systems, 129: 350–367. doi: 10.1016/j.jmarsys.2013.08.001
    [4] Fujii M, Chai Fei, Shi Lei, et al. 2009. Seasonal and interannual variability of oceanic carbon cycling in the western and central tropical-subtropical Pacific: A physical-biogeochemical modeling study. Journal of Oceanography, 65(5): 689–701. doi: 10.1007/s10872-009-0060-6
    [5] Kalnay E, Kanamitsu R, Kistler R, et al. 1996. The NCEP/NCAR 40-year reanalysis project. Bulletin of the American Meteorological Society, 77(3): 437–472. doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
    [6] Khatiwala S, Tanhua T, Fletcher S M, et al. 2013. Global ocean storage of anthropogenic carbon. Biogeosciences, 10(4): 2169–2191. doi: 10.5194/bg-10-2169-2013
    [7] Le Quéré C, Andrew R M, Friedlingstein P, et al. 2018. Global carbon budget 2017. Earth System Science Data, 10(1): 405–448. doi: 10.5194/essd-10-405-2018
    [8] Liu Guimei, Chai Fei. 2009a. Seasonal and interannual variability of primary and export production in the South China Sea: A three-dimensional physical–biogeochemical model study. ICES Journal of Marine Science, 66(2): 420–431. doi: 10.1093/icesjms/fsn219
    [9] Liu Guimei, Chai Fei. 2009b. Seasonal and interannual variation of physical and biological processes during 1994–2001 in the Sea of Japan/East Sea: A three-dimensional physical-biogeochemical modeling study. Journal of Marine Systems, 78(2): 265–277. doi: 10.1016/j.jmarsys.2009.02.011
    [10] McNeil B I, Metzl N, Key R M, et al. 2007. An empirical estimate of the Southern Ocean air-sea CO2 flux. Global Biogeochemical Cycles, 21(3): GB3011. doi: 10.1029/2007GB002991
    [11] Najjar R G, Orr J C. 1999: Biotic how-to. , Ocean Carbon-cycle Model Intercomparison Project (OCMIP). Revision 1.7. http://www.ipsl.jussieu.fr/OCMIP/phase2/simulations/Biotic/HOWTO-Biotic.html[1999-10-05/2021-4-20]
    [12] Nakano H, Tsujino H, Hirabara M, et al. 2011. Uptake mechanism of anthropogenic CO2 in the Kuroshio Extension region in an ocean general circulation model. Journal of Oceanography, 67(6): 765–783. doi: 10.1007/s10872-011-0075-7
    [13] O’Reilly C H, Zanna L. 2018. The signature of oceanic processes in decadal extratropical SST anomalies. Geophysical Research Letters, 45(15): 7719–7730. doi: 10.1029/2018GL079077
    [14] Ogawa K, Usui T, Takatani S, et al. 2006. Shipboard measurements of atmospheric and surface seawater pCO2 in the North Pacific carried out from January 1999 to October 2000 on the voluntary observation ship MS Alligator Liberty. Papers in Meteorology and Geophysics, 57: 37–46. doi: 10.2467/mripapers.57.37
    [15] Palevsky H I, Quay P D, Lockwood D E, et al. 2016. The annual cycle of gross primary production, net community production, and export efficiency across the North Pacific Ocean. Global Biogeochemical Cycles, 30(2): 361–380. doi: 10.1002/2015GB005318
    [16] Qiu Bo. 2001. Kuroshio and Oyashio currents. In: Steele J H, Turekian K K, Thorpe S A, eds. Encyclopedia of Ocean Sciences. London: Academic Press, 1413–1425. doi: 10.1006/rwos.2001.0350
    [17] Reynolds R W, Smith T M, Liu Chunying, et al. 2007. Daily high-resolution-blended analyses for sea surface temperature. Journal of Climate, 20(22): 5473–5496. doi: 10.1175/2007JCLI1824.1
    [18] Rodgers K B, Sarmiento J L, Aumont O, et al. 2008. A wintertime uptake window for anthropogenic CO2 in the North Pacific. Global Biogeochemical Cycles, 22(2): GB2020. doi: 10.1029/2006GB002920
    [19] Sabine C L, Hankin S, Koyuk H, et al. 2013. Surface Ocean CO2 Atlas (SOCAT) gridded data products. Earth System Science Data, 5(1): 145–153. doi: 10.5194/essd-5-145-2013
    [20] Seager R, Kushnir Y, Naik N H, et al. 2001. Wind-driven shifts in the latitude of the Kuroshio–Oyashio Extension and generation of SST anomalies on decadal timescales. Journal of Climate, 14(22): 4249–4265. doi: 10.1175/1520-0442(2001)014<4249:WDSITL>2.0.CO;2
    [21] Shchepetkin A F, McWilliams J C. 2005. The regional oceanic modeling system (ROMS): A split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Modelling, 9(4): 347–404. doi: 10.1016/j.ocemod.2004.08.002
    [22] Stow C A, Jolliff J, McGillicuddy D J Jr, et al. 2009. Skill assessment for coupled biological/physical models of marine systems, Journal of Marine Systems, 76: 4–15,
    [23] Sutton A J, Wanninkhof R, Sabine C L, et al. 2017. Variability and trends in surface seawater pCO2 and CO2 flux in the Pacific Ocean. Geophysical Research Letters, 44(11): 5627–5636. doi: 10.1002/2017GL073814
    [24] Takahashi T, Olafsson J, Goddard J G, et al. 1993. Seasonal variation of CO2 and nutrients in the high-latitude surface oceans: A comparative study. Global Biogeochemical Cycles, 7(4): 843–878. doi: 10.1029/93GB02263
    [25] Takahashi T, Sutherland S C, Feely R A, et al. 2006. Decadal change of the surface water pCO2 in the North Pacific: A synthesis of 35 years of observations. Journal of Geophysical Research: Oceans, 111(C7): C07S05. doi: 10.1029/2005JC003074
    [26] Takahashi T, Sutherland S C, Sweeney C, et al. 2002. Global sea–air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects. Deep-Sea Research Part II:Topical Studies in Oceanography, 49(9-10): 1601–1622. doi: 10.1016/S0967-0645(02)00003-6
    [27] Takahashi T, Sutherland S C, Wanninkhof R, et al. 2009. Climatological mean and decadal change in surface ocean pCO2, and net sea-air CO2 flux over the global oceans. Deep-Sea Research Part II: Topical Studies in Oceanography, 56(8−10): 554–577. doi: 10.1016/j.dsr2.2008.12.009
    [28] Takamura T R, Inoue H Y, Midorikawa T, et al. 2010. Seasonal and inter-annual variations in pCO2 sea and air-sea CO2 fluxes in mid-latitudes of the western and eastern North Pacific during 1999–2006: Recent results utilizing voluntary observation ships. Journal of the Meteorological Society of Japan. Ser. II, 88(6): 883–898. doi: 10.2151/jmsj.2010-602
    [29] Wang Xiaochun, Chao Yi. 2004. Simulated sea surface salinity variability in the tropical Pacific. Geophysical Research Letters, 31(2): L02302. doi: 10.1029/2003GL018146
    [30] Xiu Peng, Chai Fei. 2012. Spatial and temporal variability in phytoplankton carbon, chlorophyll, and nitrogen in the North Pacific. Journal of Geophysical Research: Oceans, 117(C11): C11023. doi: 10.1029/2012JC008067
    [31] Xiu Peng, Chai Fei. 2014a. Connections between physical, optical and biogeochemical processes in the Pacific Ocean. Progress in Oceanography, 122: 30–53. doi: 10.1016/j.pocean.2013.11.008
    [32] Xiu Peng, Chai Fei. 2014b. Variability of oceanic carbon cycle in the North Pacific from seasonal to decadal scales. Journal of Geophysical Research: Oceans, 119(8): 5270–5288. doi: 10.1002/2013JC009505
    [33] Yasuda I. 2003. Hydrographic structure and variability in the Kuroshio-Oyashio transition area. Journal of Oceanography, 59(4): 389–402. doi: 10.1023/A:1025580313836
    [34] Yoshikawa-Inoue H, Matsueda H, Ishii M, et al. 1995. Long-term trend of the partial pressure of carbon dioxide (pCO2) in surface waters of the western North Pacific, 1984–1993. Tellus B: Chemical and Physical Meteorology, 47(4): 391–413. doi: 10.3402/tellusb.v47i4.16057
    [35] Yoshikawa-Inoue H, Midorikawa T, Takamura T R. 2014. Temporal and spatial variations in carbonate system and air-sea CO2 flux in the Kuroshio and Kuroshio extension. In: Uematsu M, Yokouchi Y, Watanabe Y W, et al., eds. Western Pacific Air-Sea Interaction Study. Tokyo, Japan: TERRAPUB, 151–161. doi: 10.5047/w-pass.a02.004
  • 加载中
  • 文章访问数:  130
  • HTML全文浏览量:  43
  • 被引次数: 0
  • 收稿日期:  2021-05-24
  • 录用日期:  2021-07-08
  • 网络出版日期:  2022-03-16