Applications of EMD to analyses of high-frequency beachface responses to Storm Bebinca in the Qing’an Bay, Guangdong Province, China

Taihuan Hu Zhiqiang Li Chunhua Zeng Gaocong Li Huiling Zhang

Taihuan Hu, Zhiqiang Li, Chunhua Zeng, Gaocong Li, Huiling Zhang. Applications of EMD to analyses of high-frequency beachface responses to Storm Bebinca in the Qing’an Bay, Guangdong Province, China[J]. Acta Oceanologica Sinica, 2022, 41(5): 147-162. doi: 10.1007/s13131-021-1948-2
Citation: Taihuan Hu, Zhiqiang Li, Chunhua Zeng, Gaocong Li, Huiling Zhang. Applications of EMD to analyses of high-frequency beachface responses to Storm Bebinca in the Qing’an Bay, Guangdong Province, China[J]. Acta Oceanologica Sinica, 2022, 41(5): 147-162. doi: 10.1007/s13131-021-1948-2

doi: 10.1007/s13131-021-1948-2

Applications of EMD to analyses of high-frequency beachface responses to Storm Bebinca in the Qing’an Bay, Guangdong Province, China

Funds: The National Natural Science Foundation of China under contract Nos 42176167 and 41676079; the Project of Enhancing School with Innovation, Guangdong Ocean University under contract No. Q18307.
More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  Location of the Qing’an Bay. The red box in a indicates the Qiongzhou Strait, and the red box in b represents the location of c.

    Figure  2.  Bebinca and storm tracks over the past decade. Bebinca track is represented by the solid red line, and the dashed blue line represents the storm track for the past decade.

    Figure  3.  Field work layout. P1−P7 mean columns; #1−#7 mean rows.

    Figure  4.  Beachface before (a) and after (b) the storm.

    Figure  5.  Elevation changes of Piles #1−#7 in P4 profile.

    Figure  6.  Daily lowest tide beach profiles during the storm.

    Figure  7.  Change variances of each pile in P4 profile.

    Figure  8.  Sediment parameters.

    Figure  9.  Wave height time series EMD decomposition.

    Figure  10.  Irribarren parameters.

    Figure  11.  Wave energy changes during the storm.

    Figure  12.  Frequency-time plot of water surface energy.

    Figure  13.  Internal mode function results (IMFs) of P4 profile.

    Figure  14.  Original series and sum of the selected IMFs for wave.

    Figure  15.  Sum of the selected IMFs for each pile of profile.

    Figure  16.  Correlation between the ability of erosion or deposition and wave height. The number represents the order of time, and the smaller number represents the first time.

    Figure  17.  Relations between the total sedimentation change and wave height. a. Pile #2, b. Pile #3, c. Pile #4, d. Pile #5, e. Pile #6, and f. Pile #7. The red line in the middle represents the net elevation change under the wave height, the maximum value exceeding zero is the total deposition, and the minimum value below zero is the total erosion. The height change of each pile represents the sediment change at that pile point.

    Table  1.   Storm track information on Bebinca (data source: Hainan Oceanic Bureau)

    Time (2018)Wind scaleWind velocity/
    (m·s−1)
    Distance/
    km
    Wave height/
    m
    08:00 on Aug. 9Grade 7144001.3–1.8
    09:00 on Aug. 10Grade 7151121.8–2.3
    11:00 on Aug. 10Grade 71547 (nearest)1.8–2.3
    14:00 on Aug. 10Grade 715751.8–2.3
    15:00 on Aug. 10Grade 71580–2261.8–2.3
    10:00 on Aug. 11Grade 7152261.8–2.3
    14:00 on Aug. 12Grade 8182101.8–2.3
    08:00 on Aug. 13Grade 8182762.0–2.5
    20:00 on Aug. 13Grade 9233151.8–2.3
    17:00 on Aug. 14Grade 10253551.8–2.3
    21:00 on Aug. 15Grade 925541.8–2.3
    02:00 on Aug. 16Grade 82072
    07:00 on Aug. 17Xiuying Tide
    Gauge Station
    下载: 导出CSV

    Table  2.   Pearson correlation coefficient on August 9 ( R was calculated based on the daily beach response var iable the variation of the penetration at each point in the profile)

    #1#2#3#4#5#6#7
    #10.536−0.183−0.741 0.018 0.390 0.404
    #2−0.012−0.712 0.045 0.687 0.715
    #3 0.301−0.650−0.314−0.227
    #4−0.172−0.523−0.514
    #5 0.431 0.281
    #6 0.987
    #7
    下载: 导出CSV

    Table  3.   Pearson correlation coefficient on August 11 ( R was calculated based on the daily beach response variable the variation of the penetration at each point of the profile)

    #2#3#4#5#6#7
    #20.2800.4260.727−0.397−0.125
    #30.4590.411 0.3790.751
    #40.4700.6000.676
    #5−0.0520.018
    #60.830
    #7
    下载: 导出CSV

    Table  4.   Parameters of beach morphodynamic state

    DateΩRTR
    Aug. 84.985.6
    Aug. 96.895.6
    Aug. 105.135.6
    Aug. 115.125.6
    Aug. 123.265.6
    Aug. 133.625.6
    Aug. 143.995.6
    下载: 导出CSV
  • [1] Aagaard T, Hughes M, Baldock T, et al. 2012. Sediment transport processes and morphodynamics on a reflective beach under storm and non-storm conditions. Marine Geology, 326–328: 154–165
    [2] Abuodha J. 2003. Grain size distribution and composition of modern dune and beach sediments, Malindi bay coast, Kenya. Journal of African Earth Sciences, 36(1–2): 41–54 doi: 10.1016/S0899-5362(03)00016-2
    [3] Aftab M F, Hovd M, Huang N E, et al. 2016. An adaptive non-linearity detection algorithm for process control loops. IFAC-PapersOnLine, 49(7): 1020–1025 doi: 10.1016/j.ifacol.2016.07.336
    [4] Aftab M F, Hovd M, Sivalingam S. 2017. Detecting non-linearity induced oscillations via the dyadic filter bank property of multivariate empirical mode decomposition. Journal of Process Control, 60: 68–81 doi: 10.1016/j.jprocont.2017.08.005
    [5] Almar R, Ranasinghe R, Sénéchal N, et al. 2012. Video-based detection of shorelines at complex meso-macro tidal beaches. Journal of Coastal Research, 28(5): 1040–1048 doi: 10.2112/JCOASTRES-D-10-00149.1
    [6] Backstrom J T, Jackson D W T, Cooper J A G, et al. 2008. Storm-driven shoreface morphodynamics on a low-wave energy delta: the role of nearshore topography and shoreline orientation. Journal of Coastal Research, 246(6): 1379–1387
    [7] Bao Liyan. 1989. Sedimentary characteristics and landform developments of Qing'an bay beach in southern Leizhou peninsula. Tropic Oceanology (in Chinese), 8(2): 75–83
    [8]
    [9] Boashash B. 1992. Estimating and interpreting the instantaneous frequency of a signal-Part I. Fundamentals. Proceedings of the IEEE, 80(4): 520–538 doi: 10.1109/5.135376
    [10] Brenner O T, Lentz E E, Hapke C J, et al. 2018. Characterizing storm response and recovery using the beach change envelope: Fire Island, New York. Geomorphology, 300: 189–202 doi: 10.1016/j.geomorph.2017.08.004
    [11] Cai F, Su X Z, Xia D X. 2004. Study on the Difference Between Storm Effects of Beaches on Two Sides of the Tropical Cyclone Track—Taking the Responses of Beaches to No. 0307 Typhoon Imbudo as an example. Advances in Marine Science (in Chinese), 22(4): 436–445
    [12] Chen Zishen. 2000. Analysis on spatial and temporal processes of beach profile variations. Marine Science Bulletin (in Chinese), 19(2): 42–48
    [13] Coco G, Senechal N, Rejas A, et al. 2014. Beach response to a sequence of extreme storms. Geomorphology, 204: 493–501 doi: 10.1016/j.geomorph.2013.08.028
    [14] Collias E E, Rona M R, McManus D A, et al. 1963. Machine processing of geological data. University of Washington Technical Report Number 87. Seattle 5, Washington, USA: University of Washington Department of Oceanalgraphy, 119–120
    [15] Corbella S, Stretch D D. 2012. Shoreline recovery from storms on the east coast of Southern Africa. Natural Hazards and Earth System Sciences, 12(1): 11–22 doi: 10.5194/nhess-12-11-2012
    [16] Costas S, Alejo I, Vila-Concejo A, et al. 2005. Persistence of storm-induced morphology on a modal low-energy beach: a case study from NW-Iberian Peninsula. Marine Geology, 224(1–4): 43–56 doi: 10.1016/j.margeo.2005.08.003
    [17] Dai Zhijun, Liu J T, Lei Yaping, et al. 2010. Patterns of sediment transport pathways on a headland bay beach—Nanwan beach, South China: a case study. Journal of Coastal Research, 26(6): 1096–1103
    [18] Dätig M, Schlurmann T. 2004. Performance and limitations of the Hilbert-Huang transformation (HHT) with an application to irregular water waves. Ocean Engineering, 31(14–15): 1783–1834 doi: 10.1016/j.oceaneng.2004.03.007
    [19] Escudero M, Silva R, Hesp P A, et al. 2019. Morphological evolution of the sandspit at Tortugueros Beach, Mexico. Marine Geology, 407: 16–31 doi: 10.1016/j.margeo.2018.10.002
    [20] Feng Xi, Olabarrieta M, Valle-Levinson A. 2016. Storm-induced semidiurnal perturbations to surges on the US Eastern Seaboard. Continental Shelf Research, 114: 54–71 doi: 10.1016/j.csr.2015.12.006
    [21] Folk R L, Ward W C. 1957. Brazos river bar: a study in the significance of grain size parameters. Journal of Sedimentary Research, 27(1): 3–26 doi: 10.1306/74D70646-2B21-11D7-8648000102C1865D
    [22] Gallagher E L, Macmahan J, Reniers A J H M, et al. 2011. Grain size variability on a rip-channeled beach. Marine Geology, 287(1–4): 43–53 doi: 10.1016/j.margeo.2011.06.010
    [23] Gervais M, Balouin Y, Belon R. 2012. Morphological response and coastal dynamics associated with major storm events along the Gulf of Lions Coastline, France. Geomorphology, 143–144: 69–80
    [24] Gunaratna T, Suzuki T, Yanagishima S. 2019. Cross-shore grain size and sorting patterns for the bed profile variation at a dissipative beach: Hasaki coast, Japan. Marine Geology, 407: 111–120 doi: 10.1016/j.margeo.2018.10.008
    [25] Haerens P, Bolle A, Trouw K, et al. 2012. Definition of storm thresholds for significant morphological change of the sandy beaches along the Belgian coastline. Geomorphology, 143–144: 104–117
    [26] Harley M D, Turner I L, Kinsela M A, et al. 2017. Extreme coastal erosion enhanced by anomalous extratropical storm wave direction. Scientific Reports, 7(1): 6033 doi: 10.1038/s41598-017-05792-1
    [27] Hegge B, Eliot I, Hsu J. 1996. Sheltered sandy beaches of Southwestern Australia. Journal of Coastal Research, 12(3): 748–760
    [28] Hoefel F, Elgar S. 2003. Wave-induced sediment transport and sandbar migration. Science, 299(5614): 1885–1887 doi: 10.1126/science.1081448
    [29] Holman R A. 1983. Edge waves and the configuration of the shoreline. In: The CRC Handbook of Coastal Processes and Erosion. Boca Raton: CRC Press, 21–23
    [30] Holman R A, Haller M C, Lippmann T C, et al. 2015. Advances in nearshore processes research: four decades of process. Shore & Beach, 83(1): 39–52
    [31] Horsburgh K J, Wilson C. 2007. Tide-surge interaction and its role in the distribution of surge residuals in the North Sea. Journal of Geophysical Research: Oceans, 112(8): C08003
    [32] Huang N E, Shen Zheng, Long S R, et al. 1998. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 454(1971): 903–995
    [33] Karunarathna H, Horrillo-Caraballo J, Kuriyama Y, et al. 2016. Linkages between sediment composition, wave climate and beach profile variability at multiple timescales. Marine Geology, 381: 194–208 doi: 10.1016/j.margeo.2016.09.012
    [34] Karunarathna H, Pender D, Ranasinghe R, et al. 2014. The effects of storm clustering on beach profile variability. Marine Geology, 348: 103–112 doi: 10.1016/j.margeo.2013.12.007
    [35] Lee G H, Nicholls R J, Birkemeier W A. 1998. Storm-driven variability of the beach-nearshore profile at Duck, North Carolina, USA, 1981–1991. Marine Geology, 148(3–4): 163–177 doi: 10.1016/S0025-3227(98)00010-3
    [36] Li Zhiqiang. 2016. Relationship between high-frequency sediment-level oscillations in the swash zone and inner surf zone wave characteristics under calm wave conditions. Open Geosciences, 8(1): 787–798
    [37] Li Ying, Lark M, Reeve D. 2005. Multi-scale variability of beach profiles at Duck: A wavelet analysis. Coastal Engineering, 52(12): 1133–1153 doi: 10.1016/j.coastaleng.2005.07.002
    [38] Liu Gen, Cai Feng, Qi Hongshuai, et al. 2019. Morphodynamic evolution and adaptability of nourished beaches. Journal of Coastal Research, 35(4): 737–750 doi: 10.2112/JCOASTRES-D-18-00037.1
    [39] Loureiro C, Ferreira Ó, Cooper J A G. 2012. Geologically constrained morphological variability and boundary effects on embayed beaches. Marine Geology, 329–331: 1–15
    [40] Ludka B C, Guza R T, O'Reilly W C, et al. 2015. Field evidence of beach profile evolution toward equilibrium. Journal of Geophysical Research: Oceans, 120(11): 7574–7597 doi: 10.1002/2015JC010893
    [41] Ma Binbin, Dai Zhijun, Pang Wenhong, et al. 2019. Dramatic typhoon-induced variability in the grain size characteristics of sediments at a meso-macrotidal beach. Continental Shelf Research, 191: 104006 doi: 10.1016/j.csr.2019.104006
    [42] Mandic D P, Rehman N U, Wu Z H, et al. 2013. Empirical mode decomposition-based time-frequency analysis of multivariate signals: The power of adaptive data analysis. IEEE Signal Processing Magazine, 30(6): 74–86 doi: 10.1109/MSP.2013.2267931
    [43] Masselink G, Hegge B J, Pattiaratchi C B. 1997. Beach cusp morphodynamics. Earth Surface Processes and Landforms, 22(12): 1139–1155 doi: 10.1002/(SICI)1096-9837(199712)22:12<1139::AID-ESP766>3.0.CO;2-1
    [44] Masselink G, Short A D. 1993. The effect of tide range on beach morphodynamics and morphology: A conceptual beach model. Journal of Coastal Research, 9(3): 785–800
    [45] Mendoza E, Velasco M, Velasco-Herrera G, et al. 2020. Spectral analysis of sea surface elevations produced by big storms: The case of hurricane Wilma. Regional Studies in Marine Science, 39: 101390 doi: 10.1016/j.rsma.2020.101390
    [46] Múnera S, Osorio A F, Velásquez J D. 2014. Data-based methods and algorithms for the analysis of sandbar behavior with exogenous variables. Computers & Geosciences, 72: 134–146
    [47] Ortega J, Smith G H. 2009. Hilbert–Huang transform analysis of storm waves. Applied Ocean Research, 31(3): 212–219 doi: 10.1016/j.apor.2009.09.003
    [48] Pender D, Karunarathna H. 2013. A statistical-process based approach for modelling beach profile variability. Coastal Engineering, 81: 19–29 doi: 10.1016/j.coastaleng.2013.06.006
    [49] Qi Hongshuai, Cai Feng, Lei Gang, et al. 2010. The response of three main beach types to tropical storms in South China. Marine Geology, 275(1–4): 244–254 doi: 10.1016/j.margeo.2010.06.005
    [50] Reeve D, Li Ying, Lark M, et al. 2007. An investigation of the multi-scale temporal variability of beach profiles at Duck using wavelet packet transforms. Coastal Engineering, 54(5): 401–415 doi: 10.1016/j.coastaleng.2006.11.008
    [51] Regnauld H, Pirazzoli P A, Morvan G, et al. 2004. Impacts of storms and evolution of the coastline in western France. Marine Geology, 210(1–4): 325–337 doi: 10.1016/j.margeo.2004.05.014
    [52] Russell P E. 1993. Mechanisms for beach erosion during storms. Continental Shelf Research, 13(11): 1243–1265 doi: 10.1016/0278-4343(93)90051-X
    [53] Sallenger A H Jr, Richmond B M. 1984. High-frequency sediment-level oscillations in the swash zone. Marine Geology, 60(1–4): 155–164 doi: 10.1016/0025-3227(84)90148-8
    [54] Schlurmann T. 2002. Spectral analysis of nonlinear water waves based on the Hilbert-Huang transformation. Journal of Offshore Mechanics and Arctic Engineering, 124(1): 22–27 doi: 10.1115/1.1423911
    [55] Scott T, Masselink G, O'Hare T, et al. 2016. The extreme 2013/2014 winter storms: beach recovery along the southwest coast of England. Marine Geology, 382: 224–241 doi: 10.1016/j.margeo.2016.10.011
    [56] Scott T, Masselink G, Russell P. 2011. Morphodynamic characteristics and classification of beaches in England and Wales. Marine Geology, 286(1–4): 1–20 doi: 10.1016/j.margeo.2011.04.004
    [57] Senechal N, Abadie S, Gallagher E, et al. 2011. The ECORS-Truc Vert'08 nearshore field experiment: presentation of a three-dimensional morphologic system in a macro-tidal environment during consecutive extreme storm conditions. Ocean Dynamics, 61(12): 2073–2098 doi: 10.1007/s10236-011-0472-x
    [58] Senechal N, Coco G, Castelle B, et al. 2015. Storm impact on the seasonal shoreline dynamics of a meso- to macrotidal open sandy beach (Biscarrosse, France). Geomorphology, 228: 448–461 doi: 10.1016/j.geomorph.2014.09.025
    [59] Splinter K D, Carley J T, Golshani A, et al. 2014. A relationship to describe the cumulative impact of storm clusters on beach erosion. Coastal Engineering, 83: 49–55 doi: 10.1016/j.coastaleng.2013.10.001
    [60] Titchmarsh E C. 1948. Introduction to the Theory of Fourier Integrals. 2nd ed. Oxford: Clarendon Press
    [61] Valle-Levinson A, Olabarrieta M, Valle A. 2013. Semidiurnal perturbations to the surge of Hurricane Sandy. Geophysical Research Letters, 40(10): 2211–2217 doi: 10.1002/grl.50461
    [62] van der Meulen T, Gourlay M R. 1968. Beach and dune erosion tests. In: Proceedings of 11th International Conference on Coastal Engineering. London, UK: American Society of Civil Engineers
    [63] Van Rijn L C. 2009. Prediction of dune erosion due to storms. Coastal Engineering, 56(4): 441–457 doi: 10.1016/j.coastaleng.2008.10.006
    [64] Vincent C, Giebel G, Pinson P, et al. 2010. Resolving nonstationary spectral information in wind speed time series using the Hilbert–Huang transform. Journal of Applied Meteorology & Climatology, 49(2): 253–267
    [65] Wang Baochan, Chen Shenliang, Gong Wenping, et al. 2006. The Formation and Evolution of the Harbor and Coast of Hainan Island (in Chinese). Beijing: Ocean Press, 32–33
    [66] Wang Yangsheng, Chen Zisen, Liu Mengwei. 2008. Analysis of water oscillations in beach-surf zone based on Hilbert-Huang transform. Acta Scientiarum Naturalium Universitatis Sunyatseni (in Chinese), 47(1): 112–115
    [67] Wright L D, Short A D. 1984. Morphodynamic variability of surf zones and beaches: a synthesis. Marine Geology, 56(1–4): 93–118 doi: 10.1016/0025-3227(84)90008-2
    [68] Zeng Chunhua, Zhu Shibing, Li Zhiqiang, et al. 2020. High-frequency in situ measurements of beach responses to Tropical Storm Bebinca at Qing'an Bay, Guangdong Province, China. Regional Studies in Marine Science, 36: 101285 doi: 10.1016/j.rsma.2020.101285
  • 加载中
图(17) / 表(4)
计量
  • 文章访问数:  767
  • HTML全文浏览量:  268
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-09
  • 录用日期:  2021-08-26
  • 网络出版日期:  2022-01-20
  • 刊出日期:  2022-05-31

目录

    /

    返回文章
    返回