An efficient algorithm for generating a spherical multiple-cell grid

Fang Hou Zhiyi Gao Jianguo Li Fujiang Yu

Fang Hou, Zhiyi Gao, Jianguo Li, Fujiang Yu. An efficient algorithm for generating a spherical multiple-cell grid[J]. Acta Oceanologica Sinica. doi: 10.1007/s13131-021-1947-3
Citation: Fang Hou, Zhiyi Gao, Jianguo Li, Fujiang Yu. An efficient algorithm for generating a spherical multiple-cell grid[J]. Acta Oceanologica Sinica. doi: 10.1007/s13131-021-1947-3

doi: 10.1007/s13131-021-1947-3

An efficient algorithm for generating a spherical multiple-cell grid

Funds: The National Key Research and Development Program of China under contract No. 2018YFC1407000.
More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  4-level nearshore refined SMC grid.

    Figure  2.  Main program flow.

    Figure  3.  Recursive loop flow of nearshore refinement.

    Figure  4.  Schematic diagram of using curves to refine the grid.

    Figure  5.  Recursive loop flow of the arbitrary area refinement.

    Figure  6.  Ray method used in judging whether the point is inside the curve.

    Figure  7.  Cases of intersection.

    Figure  8.  Misjudgments in the ray method.

    Figure  9.  A 9-level nearshore refined grid.

    Figure  10.  A 6-level arbitrary area refined grid. a. The polygons used to specify the refined area, and b. the final generated grid.

    Figure  11.  Overview of 6-level (a) and 4-level SMC grids (b).

    Figure  12.  The curves used to define the range of the mesh refinement (a), the curves used to delimit the nearshore and offshore refinement ranges (b), and corresponding (6-level) grid (c).

    Figure  13.  A comparison diagram of the black box coverage area as shown in Fig. 11.

    Figure  14.  Wind field scatter on September 1, 2020 at 00:00 (a), 06:00 (b), 12:00 (c), and 18:00 (d).

    Figure  15.  Wind field scatter of typhoon center on September 1, 2020 at 00:00 (a), 06:00 (b), 12:00 (c), and 18:00 (d).

    Figure  16.  Significant wave heights on September 1, 2020 at 00:00 (a), 06:00 (b), 12:00 (c), and 18:00 (d).

    Figure  17.  Cumulative distribution of the characterization of energy on September 1, 2020 at 00:00 (a), 06:00 (b), 12:00 (c), and 18:00 (d).

    Table  1.   Comparison of grid generation algorithms

    Met OfficeDurrant and
    Saulter
    This paper
    Refinement methodnearshore
    refinement
    rectangular area refinementarbitrary area
    refinement and
    nearshore refinement
    Level of refinementfixedunfixedunfixed
    Degree of
    completion
    completedunder developmentcompleted
    下载: 导出CSV

    Table  2.   Resolution list

    AlgorithmRegionResolution
    4-level SMC gridnearshorelat: 0.058°, lon: 0.087°
    nearshorelat: 0.116°, lon: 0.174°
    nearshorelat: 0.232°, lon: 0.348°
    open sealat: 0.464°, lon: 0.696°
    6-level SMC gridnearshore (China)lat: 0.014°, lon: 0.021°
    nearshore (China)lat: 0.028°, lon: 0.042°
    offshore(China)lat: 0.058°, lon: 0.087°
    Northwest Pacificlat: 0.116°, lon: 0.174°
    North Pacificlat: 0.232°, lon: 0.348°
    globallat: 0.464°, lon: 0.696°
    下载: 导出CSV
  • [1] Bunney C, Saulter A. 2015. An ensemble forecast system for prediction of Atlantic–UK wind waves. Ocean Modelling, 96: 103–116. doi: 10.1016/j.ocemod.2015.07.005
    [2] Casas-Prat M, Wang X L, Swart N. 2018. CMIP5-based global wave climate projections including the entire Arctic Ocean. Ocean Modelling, 123: 66–85. doi: 10.1016/j.ocemod.2017.12.003
    [3] Chawla A, Tolman H L, Gerald V, et al. 2013. A multigrid wave forecasting model: A new paradigm in operational wave forecasting. Weather and Forecasting, 28(4): 1057–1078. doi: 10.1175/WAF-D-12-00007.1
    [4] Hsu T W, Ou S H, Liau J M. 2005. Hindcasting nearshore wind waves using a FEM code for SWAN. Coastal Engineering, 52(2): 177–195. doi: 10.1016/j.coastaleng.2004.11.005
    [5] Li Jianguo. 2008. Upstream nonoscillatory advection schemes. Monthly Weather Review, 136(12): 4709–4729. doi: 10.1175/2008MWR2451.1
    [6] Li Jianguo. 2011. Global transport on a spherical multiple-cell grid. Monthly Weather Review, 139(5): 1536–1555. doi: 10.1175/2010MWR3196.1
    [7] Li Jianguo. 2012. Propagation of ocean surface waves on a spherical multiple-cell grid. Journal of Computational Physics, 231(24): 8262–8277. doi: 10.1016/j.jcp.2012.08.007
    [8] Li Jingkai, Ma Yunrui, Liu Qingxiang, et al. 2019. Growth of wave height with retreating ice cover in the Arctic. Cold Regions Science and Technology, 164: 102790. doi: 10.1016/j.coldregions.2019.102790
    [9] Li Jianguo, Saulter A. 2014. Unified global and regional wave model on a multi-resolution grid. Ocean Dynamics, 64(11): 1657–1670. doi: 10.1007/s10236-014-0774-x
    [10] Popinet S, Gorman R M, Rickard G J, et al. 2010. A quadtree-adaptive spectral wave model. Ocean Modelling, 34(1/2): 36–49. doi: 10.1016/j.ocemod.2010.04.003
    [11] Qi Jianhua, Chen Changsheng, Beardsley R C, et al. 2009. An unstructured-grid finite-volume surface wave model (FVCOM-SWAVE): Implementation, validations and applications. Ocean Modelling, 28(1–3): 153–166. doi: 10.1016/j.ocemod.2009.01.007
    [12] Rasch P J. 1994. Conservative shape-preserving two-dimensional transport on a spherical reduced grid. Monthly Weather Review, 122(6): 1337–1350. doi: 10.1175/1520-0493(1994)122<1337:CSPTDT>2.0.CO;2
  • 加载中
图(18) / 表(2)
计量
  • 文章访问数:  119
  • HTML全文浏览量:  24
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-22
  • 录用日期:  2021-07-12
  • 网络出版日期:  2022-01-15

目录

    /

    返回文章
    返回