Spreading-rate dependence of hydroacoustic and teleseismic seismicity of ridge-transform systems: East Pacific Rise, Galapagos Ridge, and Mid-Atlantic Ridge

Tingting Zheng Jian Lin Qiu Zhong

Tingting Zheng, Jian Lin, Qiu Zhong. Spreading-rate dependence of hydroacoustic and teleseismic seismicity of ridge-transform systems: East Pacific Rise, Galapagos Ridge, and Mid-Atlantic Ridge[J]. Acta Oceanologica Sinica. doi: 10.1007/s13131-021-1936-6
Citation: Tingting Zheng, Jian Lin, Qiu Zhong. Spreading-rate dependence of hydroacoustic and teleseismic seismicity of ridge-transform systems: East Pacific Rise, Galapagos Ridge, and Mid-Atlantic Ridge[J]. Acta Oceanologica Sinica. doi: 10.1007/s13131-021-1936-6

doi: 10.1007/s13131-021-1936-6

Spreading-rate dependence of hydroacoustic and teleseismic seismicity of ridge-transform systems: East Pacific Rise, Galapagos Ridge, and Mid-Atlantic Ridge

Funds: The Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) under contract No. GML2019ZD0205; the National Natural Science Foundation of China under contract Nos 42006055, 41704049, 41890813, 41976066, and 41976064; the State Key Laboratory of Marine Geology, Tongji University under contract No. MGK202011; the China Scholarship Council, Chinese Academy of Sciences under contract Nos Y4SL021001, QYZDY-SSW-DQC005, 131551KYSB20200021, 133244KYSB20180029, and ISEE2021PY03; the International Conference Communication Fund for Graduate Students, Tongji University.
More Information
    Corresponding author: E-mail: qiuzhong@scsio.ac.cn
  • † These authors contributed equally to this work.
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  
    † These authors contributed equally to this work.
  • Figure  1.  Locations of the three study areas. Blue boxes mark the individual study areas shown in Fig. 2. Stars are hydrophone locations, bold black lines are plate boundaries, and gray areas indicate continents.

    Figure  2.  Bathymetry of the East Pacific Rise (EPR) (a), Galapagos Ridge (GR) (b), and Mid-Atlantic Ridge (MAR) (c). Red circles are hydroacoustic events within 50 km along corresponding ridge and transform faults, stars are hydrophone locations, and black lines mark mid-ocean ridges and transform faults (with names labeled).

    Figure  3.  Frequency magnitude distribution for both hydroacoustic (a–c) and teleseismic (d–f) data in the three regions. Blue circles are cumulative event numbers, and black triangles are noncumulative numbers with 0.1 intervals. Red downward triangles mark Mc, and red lines are best GR fit with a and b values indicated in each panel.

    Figure  4.  Fitting a and b values for individual transform faults in three study areas based on the Gutenberg-Richter (G-R) law. Blue circles show EPR transform faults, red circles show GR transform faults, and black circles show MAR transform faults. Triangles represent the average values of each area. Red line is the best linear fit for all a and b values.

    Figure  5.  Three types of asymmetries in seismicity in the inside corner (IC) and outside corner (OC) crusts. a. Type 1: more events in the IC (red dots) than in the OC (black dots) crust. b. Type 2: event numbers are similar in the IC and OC crust. c. Type 3: more events in the OC than in the IC. d. An example of Type 1 asymmetry south of the Oceanographer transform fault on the MAR. e. An example of Type 2 asymmetry on the MAR near 17°N. f. An example of Type 3 asymmetry north of the Kane transform fault on the MAR. Circles are hydroacoustic events with symbol sizes proportionate to magnitude.

    Figure  6.  IC/OC event number of each segment in three study areas. Dashed black lines show where event numbers were the same in the IC and OC crusts. Other colored dashed lines quantify the percentage (labeled) between IC and OC event numbers. Blue circles show segments on the EPR, red circles show segments on the GR, and black circles show segments on the MAR.

    Figure  7.  Topographic variation and hydroacoustic event distribution along ridge axes on the EPR (a), GR (b) and MAR (c). Black dashed lines show locations of segment ends. Blue lines show depth with axis on the left. Red bars are event number with axis on the right.

    Figure  8.  Distribution of one selected mainshock-aftershock sequence on the MAR with ML=5.2. a. Location of the sequence overlaid on topography; the black box was used for event selection. b. Magnitude distribution and aftershock with time after the mainshocks. c. Frequency magnitude distribution (FMD) and a and b values from G-R law fit. d. Aftershock cumulative number versus time. K and p were fitted from the modified Omori law.

    Figure  9.  Plots of fault lengths versus hydroacoustic event numbers (per year) (a) and average depth along transform fault (TF) versus hydroacoustic event number (b) in the three regions. Blue circles show EPR transform faults, red circles show GR transform faults, and black circles show MAR transform faults. The event number shows no clear relationships with the fault length and average fault depth.

    Figure  10.  Three types of aftershock triggering models and corresponding cases. a. Strike-slip source earthquake and strike-slip receiver faults. b. Strike-slip source earthquake and normal faulting receiver faults. c. Normal faulting source fault and normal faulting receiver faults. d. A MW=5.6 strike-slip mainshock might have triggered strike-slip aftershocks on the Discovery transform fault on the EPR. e. A MW=5.7 strike-slip mainshock might have triggered normal faulting aftershocks on the Siqueiros transform fault on the EPR. f. A MW=5.6 normal faulting mainshock might have triggered normal faulting aftershocks north of the Kane transform fault on the MAR.

    Table  1.   Hydroacoustic information on transfrom fault

    AreaTF nameFault length/kmEvent number/aa (G-R law)b (G-R law)Average dist. from TF /km1)STD /km
    EPRClipperton88.825.22.160.914.06.8
    Siquerios#12)28.733.22.040.713.45.0
    Siquerios#244.581.12.060.63–2.75.2
    Siquerios#338.779.62.040.61–0.13.8
    Siquerios#427.145.52.050.63–2.04.7
    Quebrada#123.162.62.320.68–0.95.1
    Quebrada#224.331.83.021.032.83.9
    Quebrada#328.138.82.660.88–2.07.1
    Quebrada#432.424.32.510.881.55.7
    Discovery#138.249.21.970.67–2.75.6
    Discovery#231.258.92.470.81–1.54.3
    Gofar#195.566.31.920.72–1.84.5
    Gofar#236.145.02.320.79–1.07.2
    Gofar#344.760.72.740.89–0.25.5
    Yaqunia51.544.51.680.65–2.04.8
    Wilkes#173.6163.82.420.711.317.5
    Wilkes#286.6287.62.880.81–4.214.5
    GRGR#140.473.73.080.95–2.314.5
    GR#2107.643.31.310.592.216.5
    Inca118.06.40.650.6–3.414.9
    MAROceanographer121.418.80.680.586.716.5
    Hayes76.011.41.060.736.018.1
    Atlantis72.359.51.920.774.030.8
    Kane149.148.11.290.7513.832.5
    Fifteen twenty194.524.11.320.8728.634.2
    Notes: 1)Negative value represents north of the transform fault (TF) at the EPR, east of the TF at the GR, and north of the TF at the MAR. 2)Sub-segments divided by intra-spreading centers on each transform fault are numbered as fault name followed by #1, #2 etc. STD, standard deviation; dist., distance.
    下载: 导出CSV

    Table  2.   Information of mainshock-aftershock sequences

    Spreading ridge systemDateTimeLocationMLSRL
    /km
    G-R lawModified Omori lawAftershock number
    (5 days)
    Lon.Lat.abkp
    EPR
    5 Aug., 199621:52:39107.34°W6.21°S5.315.62.610.515.382.5014
    23 Aug., 199622:19:06104.25°W4.01°S5.623.92.580.482.321.4920
    26 Feb., 199700:21:00108.24°W8.88°S5.315.63.310.737.152.5016
    28 Feb., 19976:07:23108.13°W8.71°S5.727.68.112.280.552.5011
    10 May, 199719:40:34103.24°W8.37°N5.111.73.330.6240.012.5039
    7 Aug., 199711:23:28104.07°W8.4°N5.111.72.370.431.422.5017
    7 Aug., 199713:42:29103.35°W8.42°N5.520.82.600.525.712.5019
    15 Aug., 199707:38:06105.92°W4.60°S5.623.91.910.360.812.5018
    2 Nov., 199700:49:40103.55°W3.78°S5.111.73.240.5513.421.1256
    26 Dec., 199715:28:16108.86°W8.97°S5.315.63.560.762.602.5018
    10 May, 199806:35:50102.98°W8.45°N5.623.93.780.5738.122.38134
    10 May, 199814:56:13103.09°W8.47°N5.936.73.710.6088.602.5097
    11 May, 19981:34:41103.18°W8.38°N5.727.63.330.595.761.2142
    30 May, 199819:30:28108.47°W9.05°S5.520.82.760.544.740.8612
    21 Aug., 199813:45:04103.67°W3.78°S5.315.62.940.531.462.5028
    25 Aug., 199818:44:31109.48°W9.24°S5.936.72.490.4722.982.5022
    7 Dec., 199805:20:00108.9°W9.09°S5.111.73.240.680.961.6428
    26 Feb., 199911:39:02108.86°W9.01°S5.315.62.730.560.911.3511
    31 Mar., 199923:18:24109.58°W9.01°S5.727.62.90.548.622.5022
    18 May, 199902:44:08108.72°W9.01°S5.418.04.880.8353.411.10270
    18 May, 199906:15:08108.56°W8.95°S5.831.94.780.85194.971.79201
    22 May, 199917:51:33102.14°W1.93°N5.315.63.120.651.711.6116
    17 Sep., 199906:53:58109.31°W8.95°S5.623.92.410.410.252.2118
    18 Sep., 199904:01:22104.75°W4.65°S5.623.92.620.492.032.5026
    10 Nov, 199901:56:31107.31°W6.18°S5.418.02.50.444.651.3838
    10 Nov., 199902:25:57107.23°W6.21°S5.520.82.860.575.611.6636
    26 Apr., 200119:00:00103.47°W8.33°N6.365.03.780.55221.862.50171
    27 Apr., 200106:36:28103.56°W8.42°N5.623.93.970.687.182.50116
    31 May., 200110:19:25109.2°W9.00°S5.418.04.840.85200.121.80201
    31 May., 200110:22:10109.25°W8.93°S5.213.54.70.81205.481.83202
    2 Jun., 200114:27:29109.37°W9.03°S5.213.540.78100.392.2566
    26 Jun., 200112:34:00104.35°W3.96°S6.148.93.520.695.541.0436
    23 Jul., 200109:43:08104.07°W3.98°S5.213.53.010.572.051.3425
    26 Jul., 200102:49:44103.71°W8.35°N5.520.82.260.471.832.5011
    17 Jun., 200213:17:56105.22°W4.58°S6.148.92.20.331.531.4417
    17 Jun., 200213:25:54105.56°W4.67°S6.699.82.250.352.001.2117
    GR29 Jul., 199717:40:2090.88°W1.61°N5.520.82.480.444.081.0627
    1 Sep., 199820:47:3297.76°W2.17°N5.315.64.141.0165.032.4937
    9 Jun., 199917:05:5495.48°W2.37°N5.418.02.440.4613.041.8211
    22 Dec., 199916:39:1595.61°W2.31°N5.520.82.120.420.411.6211
    21 May, 200116:43:1795.37°W2.61°N5.936.74.741.080.782.5016
    MAR26 Mar., 199915:29:4745.11°W22.5°N5.831.92.060.440.711.4311
    6 Apr., 199904:51:2946.34°W24.41°N5.520.83.590.6351.341.97144
    18 Feb., 200008:01:4946.60°W16.62°N5.418.02.350.4210.792.5026
    5 Oct., 200013:38:5140.78°W31.61°N5.520.83.590.7411.431.0568
    12 Jun., 200114:22:4644.95°W14.61°N5.315.62.500.472.302.5019
    25 Jun., 200114:52:1345.09°W22.42°N5.213.52.200.480.312.2217
    13 Jul., 200119:48:5143.39°W28.64°N5.520.83.330.6777.891.9166
    12 Nov., 200110:11:4744.94°W22.22°N5.213.52.480.472.391.8235
    13 Dec., 200113:51:2344.32°W26.88°N5.315.62.850.6264.192.5049
    Note: *SRL, subsurface rupture length (km); Lon., longitude; Lat., latitude. Aftershock number: events number within 5 days after mainshock
    下载: 导出CSV
  • [1] Barclay A H, Toomey D R, Solomon S C. 1998. Seismic structure and crustal magmatism at the Mid-Atlantic Ridge, 35°N. Journal of Geophysical Research:Solid Earth, 103(B8): 17827–17844. doi: 10.1029/98JB01275
    [2] Bird P. 2003. An updated digital model of plate boundaries. Geochemistry, Geophysics, Geosystems, 4(3): 1027,
    [3] Bohnenstiehl D R, Tolstoy M, Dziak R P, et al. 2002. Aftershock sequences in the mid-ocean ridge environment: an analysis using hydroacoustic data. Tectonophysics, 354(1–2): 49–70. doi: 10.1016/S0040-1951(02)00289-5
    [4] Bohnenstiehl D R, Tolstoy M. 2003. Comparison of teleseismically and hydroacoustically derived earthquake locations along the north-central Mid-Atlantic Ridge and Equatorial East Pacific Rise. Seismological Research Letters, 74(6): 791–802. doi: 10.1785/gssrl.74.6.791
    [5] DeMets C, Gordon R G, Argus D F, et al. 1990. Current plate motions. Geophysical Journal International, 101(2): 425–478. doi: 10.1111/j.1365-246X.1990.tb06579.x
    [6] Engeln J F, Wiens D A, Stein S. 1986. Mechanisms and depths of Atlantic transform earthquakes. Journal of Geophysical Research: Solid Earth, 91(B1): 548–577. doi: 10.1029/JB091iB01p00548
    [7] Escartín J, Lin Jian. 1995. Ridge offsets, normal faulting, and gravity anomalies of slow spreading ridges. Journal of Geophysical Research: Solid Earth, 100(B4): 6163–6177. doi: 10.1029/94JB03267
    [8] Fox P J, Gallo D G. 1984. A tectonic model for ridge-transform-ridge plate boundaries: Implications for the structure of oceanic lithosphere. Tectonophysics, 104(3−4): 205–242. doi: 10.1016/0040-1951(84)90124-0
    [9] Fox C G, Matsumoto H, Lau T K A. 2001. Monitoring Pacific Ocean seismicity from an autonomous hydrophone array. Journal of Geophysical Research: Solid Earth, 106(B3): 4183–4206. doi: 10.1029/2000JB900404
    [10] Fox C G, Radford W E, Dziak R P, et al. 1995. Acoustic detection of a seafloor spreading episode on the Juan de Fuca Ridge using military hydrophone arrays. Geophysical Research Letters, 22(2): 131–134. doi: 10.1029/94GL02059
    [11] Gregg P M, Lin Jian, Smith D K. 2006. Segmentation of transform systems on the East Pacific Rise: Implications for earthquake processes at fast-slipping oceanic transform faults. Geology, 34(4): 289–292. doi: 10.1130/g22212.1
    [12] Gutenberg B, Richter C F. 1944. Frequency of earthquakes in California. Bulletin of the Seismological Society of America, 34(4): 185–188. doi: 10.1785/BSSA0340040185
    [13] Huang P Y, Solomon S C. 1988. Centroid depths of mid-ocean ridge earthquakes: Dependence on spreading rate. Journal of Geophysical Research: Solid Earth, 93(B11): 13445–13477. doi: 10.1029/JB093iB11p13445
    [14] Huang P Y, Solomon S C, Bergman E A, et al. 1986. Focal depths and mechanism of Mid-Atlantic Ridge earthquakes from body waveform inversion. Journal of Geophysical Research: Solid Earth, 91(B1): 579–598. doi: 10.1029/JB091iB01p00579
    [15] Husen S, Hardebeck J L. 2010. Theme IV-Understanding Seismicity Catalogs and their Problems: Earthquake location accuracy. https://dx. doi.org/10.5078/corssa-55815573 [2010-09-05/2021-04-01]
    [16] Johansen S E, Panzner M, Mittet R, et al. 2019. Deep electrical imaging of the ultraslow-spreading Mohns Ridge. Nature, 567(7748): 379–383. doi: 10.1038/s41586-019-1010-0
    [17] Key K, Constable S, Liu Lijun, et al. 2013. Electrical image of passive mantle upwelling beneath the northern East Pacific Rise. Nature, 495(7442): 499–502. doi: 10.1038/nature11932
    [18] King G C P, Stein R S, Lin Jian. 1994. Static stress changes and the triggering of earthquakes. Bulletin of the Seismological Society of America, 84(3): 935–953
    [19] Kuo Banyuan, Forsyth D W. 1988. Gravity anomalies of the ridge-transform system in the South Atlantic between 31 and 34.5°S: Upwelling centers and variations in crustal thickness. Marine Geophysical Researches, 10(3–4): 205–232. doi: 10.1007/BF00310065
    [20] Lin Jian, Morgan J P. 1992. The spreading rate dependence of three-dimensional mid-ocean ridge gravity structure. Geophysical Research Letters, 19(1): 13–16. doi: 10.1029/91gl03041
    [21] Lin Jian, Purdy G M, Schouten H, et al. 1990. Evidence from gravity data for focused magmatic accretion along the Mid-Atlantic Ridge. Nature, 344(6267): 627–632. doi: 10.1038/344627a0
    [22] Lin Jian, Stein R S. 2004. Stress triggering in thrust and subduction earthquakes and stress interaction between the southern San Andreas and nearby thrust and strike-slip faults. Journal of Geophysical Research: Solid Earth, 109(B2): B02303. doi: 10.1029/2003JB002607
    [23] Mignan A, Woessner J. 2012. Theme IV–Understanding Seismicity Catalogs and their Problems: Estimating the magnitude of completeness for earthquake catalogs. https://dx. doi.org/10.5078/corssa-00180805[2012-04-01/2021-04-02]
    [24] Sandwell D T, Müller R D, Smith W H, et al. 2014. New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure. Science, 346(6205): 65–67. doi: 10.1126/science.1258213
    [25] Shen Yang. 2002. Seismicity at the southern East Pacific Rise from recordings of an ocean bottom seismometer array. Journal of Geophysical Research: Solid Earth, 107(B12): EPM 9-1–EPM 9-11,
    [26] Smith D K, Escartin J, Cannat M, et al. 2003. Spatial and temporal distribution of seismicity along the northern Mid-Atlantic Ridge (15°–35°N). Journal of Geophysical Research: Solid Earth, 108(B3): 2167. doi: 10.1029/2002jb001964
    [27] Smith D K, Tolstoy M, Fox C G, et al. 2002. Hydroacoustic monitoring of seismicity at the slow-spreading Mid-Atlantic Ridge. Geophysical Research Letters, 29(11): 13-1–13-4,
    [28] Stein R S. 1999. The role of stress transfer in earthquake occurrence. Nature, 402(6762): 605–609. doi: 10.1038/45144
    [29] Toda S, Stein R S. 2000. Did stress triggering cause the large off-fault aftershocks of the 25 March 1998 M w=8.1 Antarctic Plate earthquake?. Geophysical Research Letters, 27(15): 2301–2304. doi: 10.1029/1999GL011129
    [30] Toda S, Stein R S, Richards-Dinger K, et al. 2005. Forecasting the evolution of seismicity in southern California: Animations built on earthquake stress transfer. Journal of Geophysical Research: Solid Earth, 110(B5): B05S16. doi: 10.1029/2004jb003415
    [31] Tucholke B E, Lin Jian. 1994. A geological model for the structure of ridge segments in slow spreading ocean crust. Journal of Geophysical Research: Solid Earth, 99(B6): 11937–11958. doi: 10.1029/94JB00338
    [32] Utsu T. 1961. A statistical study on the occurrence of aftershocks. Geophysical Magazine, 30(4): 521–605
    [33] Utsu T, Ogata Y, Matsu’ura R S. 1995. The centenary of the omori formula for a decay law of aftershock activity. Journal of Physics of the Earth, 43(1): 1–33. doi: 10.4294/jpe1952.43.1
    [34] Wang Tingting, Tucholke B E, Lin Jian. 2015. Spatial and temporal variations in crustal production at the Mid-Atlantic Ridge, 25°N–27°30′N and 0–27 Ma. Journal of Geophysical Research: Solid Earth, 120(4): 2119–2142. doi: 10.1002/2014JB011501
    [35] Wells D L, Coppersmith K J. 1994. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin of the Seismological Society of America, 84(4): 974–1002
    [36] Wiemer S, Wyss M. 2000. Minimum magnitude of completeness in earthquake catalogs: Examples from Alaska, the Western United States, and Japan. Bulletin of the Seismological Society of America, 90(4): 859–869. doi: 10.1785/0119990114
    [37] Wilson J T. 1965. A new class of faults and their bearing on continental drift. Nature, 207(4995): 343–347. doi: 10.1038/207343a0
    [38] Zheng Tingting, Tucholke B E, Lin Jian. 2019. Long-term evolution of nontransform discontinuities at the mid-atlantic ridge, 24°N–27°30′N. Journal of Geophysical Research: Solid Earth, 124(10): 10023–10055. doi: 10.1029/2019JB017648
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  85
  • HTML全文浏览量:  16
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-17
  • 录用日期:  2021-10-15
  • 网络出版日期:  2022-03-21

目录

    /

    返回文章
    返回