Winter distribution of diatom assemblages along the coastline of Korea in 2020

Joon Sang Park Kyun-Woo Lee Seung Won Jung Taek-Kyun Lee Hyoung Min Joo

Joon Sang Park, Kyun-Woo Lee, Seung Won Jung, Taek-Kyun Lee, Hyoung Min Joo. Winter distribution of diatom assemblages along the coastline of Korea in 2020[J]. Acta Oceanologica Sinica. doi: 10.1007/s13131-021-1929-5
Citation: Joon Sang Park, Kyun-Woo Lee, Seung Won Jung, Taek-Kyun Lee, Hyoung Min Joo. Winter distribution of diatom assemblages along the coastline of Korea in 2020[J]. Acta Oceanologica Sinica. doi: 10.1007/s13131-021-1929-5

doi: 10.1007/s13131-021-1929-5

Winter distribution of diatom assemblages along the coastline of Korea in 2020

Funds: The fund of the research project of Korea Institute of Ocean Science & Technology under contract No. PE99922; the National Research Foundation of the Ministry of Science and ICT under contract Nos NRF-2020R1A2C2005970 and NRF-2017M3A9E4072753.
More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
  • Figure  1.  Abiotic variables: (a) pH, (b) water temperature, and (c) salinity, and biotic variables: (d) abundance, (e) Shannon’s diversity index, and (f) species richness.

    Figure  2.  Hierarchical cluster analysis (UPGMA) of diatom communities based on (a) Bray–Curtis similarity, and (b) biogeographic zonation in the Yellow Sea (YS), South Sea (SS), and East Sea (ES) of Korea during winter.

    Figure  3.  Heatmap graph on fourth root transformed abundance data for indicator species in the Yellow Sea (YS), South Sea (SS), Southern East Sea (SES), and Northern East Sea (NES) regions. Colors for species denote the selected indicator species for each region: YS (yellow), SS (green), SES (orange), and NES (blue). Scale bar indicate the transformed abundance by its fourth root.

    Figure  4.  Micrographs of representative indicator species for the four regions identified in this study: (i) Actinoptychus senarius, (ii) Cyclotella litoralis, (iii) Melosira nummuloides, (iv) Paralia sulcata, (v) Thalassiosira eccentrica, (vi) Pleurosigma angulatum, (vii–viii) Asterionellopsis glacialis, (ix), Chaetoceros contortus, (x) C. curvisetus, (xi) C. debilis, (xii) C. constrictus, (xiii) Detonula pumila, (xiv) Skeletonema dohrnii-marinoii complex, (xv) Thalassiosira curviseriata, (xvi) T. nordenskioeldii, (xvii) Eucampia zodiacus, (xviii) Pseudo-nitzschia pungens, (xix–xx) Achnanthes spp., (xxi) Licmophora grandis, (xxii) L. paradoxa, (xxiii) Odontella aurita, (xxiv) Entomoneis paludosa, (xxv) Chaetoceros radicans, (xxvi) Corethron pennatum, (xxvii) Coscinodiscus centralis, (xxviii) Thalassiosira pacifica, (xxix) Porosira glacialis, (xxx) Licmophora ehrenbergii.

    Table  1.   Means and ranges of abiotic variables including pH, water temperature, salinity and biotic variables including number of diatoms species, abundance, Shannon’s diversity index (H), evenness (E), and species richness (R). Numbers in parentheses indicate the range between minimum and maximum. Group 1-4 and Unique 1-3 were obtained from UPGMA Hierarchical cluster analysis presented in Fig. 2

    GroupSeaNo. sitesPhWT (°C)SalinityNo. speciesAbundance (105 cells·L-1)Diversity (H’)EvennessRichness
    Group 1YS228.03±0.18
    Group 2SS518.41±0.25
    Group 3SES258.19±0.09
    Group 4NES118.15±0.09
    Unique 1SS28.50
    Unique 2NES28.20
    Unique 3NES18.047.3933.23180.160.250.0818
    Note: WT represents water temperature; YS, Yellow Sea; SS, the southern Sea; SES, the Southern East Sea; NES, the northern East Sea.
    下载: 导出CSV

    Table  2.   Indicator values of diatom species in each group. The indicator species are listed systematically according to Medlin and Kaczmarska (2004)

    Groups (Region)ClassOrderSpeciesStatp-value
    Group 1CoscinodiscophyceaeCoscinodiscalesActinoptychus senarius0.4340.0243*
    (Yellow Sea)MelosiralesMelosira nummuloides0.5160.003**
    ParalialesParalia sulcata0.8420.0001***
    MediophyceaeThalassiosiralesCyclotella striata0.6030.0005***
    Thalassiosira eccentrica0.4810.0081**
    BacillariophyceaeFragilarialesAsteroplanus kariana0.6140.0017**
    NaviculalesPleurosigma angulatum0.4620.0111*
    Group 2MediophyceaeChaetocerotalesChaetoceros affinis0.3800.0482*
    (Southern Sea)Chaetoceros brevis0.4130.0233*
    Chaetoceros constrictus0.6130.0001***
    Chaetoceros contortus0.5500.0003***
    Chaetoceros curvisetus0.4900.0027**
    Chaetoceros debilis0.5630.0009***
    Chaetoceros laciniosus0.5380.0001***
    Chaetoceros socialis0.4290.0377*
    Chaetoceros spp.0.4790.0094**
    HemiaulalesEucampia zodiacus0.5960.0001***
    ThalassiosiralesDetonula pumila0.5200.0011**
    Skeletonema dohrnii-marinoii0.7070.0001***
    Thalassiosira curviseriata0.6570.0001***
    Thalassiosira nordenskioeldii0.7450.0001***
    BacillariophyceaeBacillarialesPseudo-nitzschia pungens0.4500.0083**
    FragilarialesAsterionellopsis glacialis0.6600.0001***
    ThalassionematalesThalassionema nitzschioides0.5820.0011**
    Group 3MediophyceaeEupodiscalesOdontella aurita0.4630.0157*
    (Southern East Sea)BacillariophyceaeLicmophoralesLicmophora grandis0.7320.0001***
    Licmophora paradoxa0.4620.0072**
    MastogloialesAchnanthes spp.0.4000.0402*
    NaviculalesNavicula spp.0.6050.0006***
    SurirellalesEntomoneis paludosa0.4600.0135*
    Group 4 (Northern East Sea)CoscinodiscophyceaeCorethralesCorethron pennatum0.5210.0117*
    CoscinodiscalesCoscinodiscus centralis0.7070.0001***
    MediophyceaeChaetocerotalesChaetoceros radicans0.5220.0207*
    ThalassiosiralesPorosira glacialis0.6740.0009***
    Thalassiosira pacifica0.5070.0458*
    BacillariophyceaeLicmophoralesLicmophora ehrenbergii0.5220.0171*
    RhabdonematalesRhabdonema spp.0.5220.0263*
    Note: *** represents >0.001; **, >0.01; *, >0.1
    下载: 导出CSV
  • [1] Abrantes F. 1988. Diatom assemblages as upwelling indicators in surface sediments off Portugal. Marine Geology, 85(1): 15–39. doi: 10.1016/0025-3227(88)90082-5
    [2] Bae S W, Kim D S. 2012. Understanding the flow properties by a numerical modeling in the South Sea of Korea. Journal of the Korean Society of Marine Environment & Safety, 18(4): 295–307. doi: 10.7837/kosomes.2012.18.4.295
    [3] Barton A D, Pershing A J, Litchman E, et al. 2013. The biogeography of marine plankton traits. Ecology Letters, 16(4): 522–534. doi: 10.1111/ele.12063
    [4] Bergkvist J, Klawonn I, Whitehouse M J, et al. 2018. Turbulence simultaneously stimulates small- and large-scale CO2 sequestration by chain-forming diatoms in the sea. Nature Communications, 9(1): 3046. doi: 10.1038/s41467-018-05149-w
    [5] Bjærke O, Jonsson P R, Alam A, et al. 2015. Is chain length in phytoplankton regulated to evade predation? Journal of Plankton Research, 37(6): 1110–1119,
    [6] Choi J K. 1991. The influence of the tidal front on primary productivity and distribution of phytoplankton in the mid-eastern coast of Yellow Sea. The Journal of the Oceanological Society of Korea, 26(3): 223–241
    [7] Choi J K, Noh J H, Orlova T, et al. 2016. Phytoplankton and primary production. In: Chang K I, Zhang C I, Park C, et al, eds. Oceanography of the East Sea (Japan Sea). Cham: Springer, 217–245
    [8] De Cáceres M. 2013. How to use the indicspecies package (ver. 1.7. 1). R Proj, 29
    [9] DeLong E F, Preston C M, Mincer T, et al. 2006. Community genomics among stratified microbial assemblages in the ocean's interior. Science, 311(5760): 496–503. doi: 10.1126/science.1120250
    [10] Denman K L. 2008. Climate change, ocean processes and ocean iron fertilization. Marine Ecology Progress Series, 364: 219–225. doi: 10.3354/meps07542
    [11] Duerksen S W, Thiemann G W, Budge S M, et al. 2014. Large, omega-3 rich, pelagic diatoms under arctic sea ice: sources and implications for food webs. PLoS One, 9(12): e114070. doi: 10.1371/journal.pone.0114070
    [12] Falkowski P. 2012. Ocean science: the power of plankton. Nature, 483(7387): S17–S20. doi: 10.1038/483S17a
    [13] Falkowski P G, Katz M E, Knoll A H, et al. 2004. The evolution of modern eukaryotic phytoplankton. Science, 305(5682): 354–360. doi: 10.1126/science.1095964
    [14] Finlay B J. 2002. Global dispersal of free-living microbial eukaryote species. Science, 296(5570): 1061–1063. doi: 10.1126/science.1070710
    [15] Galand P E, Casamayor E O, Kirchman D L, Lovejoy C. 2009. Ecology of the rare microbial biosphere of the Arctic Ocean. Proceedings of the National Academy of Sciences of the United States of America, 106(52): 22427–22432. doi: 10.1073/pnas.0908284106
    [16] Gebühr C, Wiltshire K H, Aberle N, et al. 2009. Influence of nutrients, temperature, light and salinity on the occurrence of Paralia sulcata at Helgoland Roads, North Sea. Aquatic Biology, 7(3): 185–197. doi: 10.3354/ab00191
    [17] Guiry M D. 2012. How many species of algae are there? Journal of Phycology, 48(5): 1057–1063,
    [18] Halse G R, Syvertsen E E. 1996. Marine diatoms. In: Tomas C R, ed. Identifying Marine Diatoms and Dinoflagellates. San Diego: Academic Press, 5–385
    [19] Happey-Wood C M, Jones P. 1988. Rhythms of vertical migration and motility in intertidal benthic diatoms with particular reference to Pleurosigma angulatum. Diatom Research, 3(1): 83–93. doi: 10.1080/0269249X.1988.9705018
    [20] Hobson L A, McQuoid M R. 1997. Temporal variations among planktonic diatom assemblages in a turbulent environment of the southern Strait of Georgia, British Columbia, Canada. Marine Ecology Progress Series, 150: 263–274. doi: 10.3354/meps150263
    [21] Honeywill C. 1998. A study of British Licmophora species and a discussion of its morphological features. Diatom Research, 13(2): 221–271. doi: 10.1080/0269249X.1998.9705450
    [22] Hustedt F. 1927–1966. Die kieselalgen deutschlands, österreichs und der schweiz. In: Rabenhorst’s Kryptogamenflora, Band 7, Teil 1–3. New York: Johnson Reprint
    [23] Ichikawa H, Beardsley R C. 2002. The current system in the Yellow and East China Seas. Journal of Oceanography, 58(1): 77–92. doi: 10.1023/A:1015876701363
    [24] Jeong H D, Hong S E, Kim S W, et al. 2014. Community structure and biological indicator species of marine benthic algal at intertidal zone in the three areas of the East Coast of Korea. Journal of the Korean Society of Marine Environment and Safety, 20(6): 609–618. doi: 10.7837/kosomes.2014.20.6.609
    [25] Joo H M, Lee S H, Jung S W, et al. 2012. Latitudinal variation of phytoplankton communities in the western Arctic Ocean. Deep-Sea Research Part II: Topical Studies in Oceanography, 81–84: 3–17,doi: 10.1016/j.dsr2.2011.06.004
    [26] Jung S W, Joo H M, Park J S, et al. 2010. Development of a rapid and effective method for preparing delicate dinoflagellates for scanning electron microscopy. Journal of Applied Phycology, 22(3): 313–317. doi: 10.1007/s10811-009-9461-6
    [27] Jung S W, Kang J, Park J S, et al. 2021. Dynamic bacterial community response to Akashiwo sanguinea (Dinophyceae) bloom in indoor marine microcosms. Scientific Reports, 11(1): 6983. doi: 10.1038/s41598-021-86590-8
    [28] Jung S W, Park J S. 2019. Two fouling Olifantiella (Bacillariophyceae) species from the northwest temperate Pacific coast. Diatom Research, 34(3): 165–180. doi: 10.1080/0269249x.2019.1649307
    [29] Jung S W, Youn S J, Shin H H, et al. 2013. Effect of temperature on changes in size and morphology of the marine diatom, Ditylum brightwellii (West) Grunow (Bacillariophyceae). Estuarine, Coastal and Shelf Science, 135: 128–136,
    [30] Kang Y S, Choi H C, Lim J H, et al. 2005. Dynamics of the phytoplankton community in the coastal waters of Chuksan Harbor, East Sea. Algae, 20(4): 345–352. doi: 10.4490/ALGAE.2005.20.4.345
    [31] Kang J H, Kim W S, Chang K I, et al. 2004. Distribution of plankton related to the mesoscale physical structure within the surface mixed layer in the southwestern East Sea, Korea. Journal of Plankton Research, 26(12): 1515–1528. doi: 10.1093/plankt/fbh140
    [32] Kang J S, Park J S, Jung S W, et al. 2021. Zooming on dynamics of marine microbial communities in the phycosphere of Akashiwo sanguinea (Dinophyta) blooms. Molecular Ecology, 30(1): 207–221. doi: 10.1111/mec.15714
    [33] Kassambara A, Mundt F. 2017. Package ‘factoextra’. Extract and visualize the results of multivariate data analyses, 76
    [34] Kim H K, Cho I H, Hwang E A, et al. 2019. Benthic diatom communities in Korean estuaries: species appearances in relation to environmental variables. International Journal of Environmental Research and Public Health, 16(15): 2681. doi: 10.3390/ijerph16152681
    [35] Kim H J, Jung S W, Lim D I, et al. 2016. Effects of temperature and nutrients on changes in genetic diversity of bacterioplankton communities in a semi-closed bay, South Korea. Marine Pollution Bulletin, 106(1–2): 139–148. doi: 10.1016/j.marpolbul.2016.03.015
    [36] Kim K, Kim K R, Min D H, et al. 2001. Warming and structural changes in the east (Japan) Sea: a clue to future changes in global oceans? Geophysical Research Letters, 28(17): 3293–3296,
    [37] Kim Y H, Min H S. 2008. Seasonal and interannual variability of the North Korean Cold Current in the East Sea reanalysis data. Ocean and Polar Research, 30(1): 21–31. doi: 10.4217/OPR.2008.30.1.021
    [38] Koh C H, Khim J S. 2014. The Korean tidal flat of the Yellow Sea: Physical setting, ecosystem and management. Ocean & Coastal Management, 102: 398–414. doi: 10.1016/j.ocecoaman.2014.07.008
    [39] Kooistra W H C F, Forlani G, De Stefano M. 2009. Adaptations of araphid pennate diatoms to a planktonic existence. Marine Ecology, 30(1): 1–15. doi: 10.1111/j.1439-0485.2008.00262.x
    [40] Kooistra W H C F, Gersonde R, Medlin L K, et al. 2007. The origin and evolution of the diatoms: their adaptation to a planktonic existence. In: Falkowski P G, Knoll A H, eds. Evolution of Primary Producers in the Sea. Burlington:Academic Press, 207–249
    [41] Lee J H. 1996. Historical review and prospect on diatoms in Korea. ALGAE, 11(3): 247
    [42] Lee S D, Joo H M, Lee J H. 2014b. Critical criteria for identification of the genus Chaetoceros (Bacillariophyta) based on setae ultrastructure. II. Subgenus Hyalochaete. Phycologia, 53(6): 614–638. doi: 10.2216/14-51r2.1
    [43] Lee J H, Park J S. 2015. Newly recorded diatom species in marine and fresh water of Korea. Journal of Ecology and Environment, 38(4): 545–562. doi: 10.5141/ecoenv.2015.058
    [44] Lee S D, Park J S, Lee J H. 2012. New record of diatom species in Korean coastal waters. Korean J Environ Biol, 30(3): 245–271
    [45] Lee S D, Park J S, Yun S M, et al. 2014a. Critical criteria for identification of the genus Chaetoceros (Bacillariophyta) based on setae ultrastructure. I. Subgenus Chaetoceros. Phycologia, 53(2): 174–187. doi: 10.2216/13-154.1
    [46] Lim D, Jung S W, Park J G, et al. 2012. Seasonal changes in water masses and phytoplankton communities in the western part of South coastal waters, Korea. Korean Society of Environmental Biology, 30(4): 328–338. doi: 10.11626/KJEB.2012.30.4.328
    [47] Lovejoy C, Legendre L, Martineau M J, et al. 2002. Distribution of phytoplankton and other protists in the North Water. Deep-Sea Research Part II:Topical Studies in Oceanography, 49(22-23): 5027–5047. doi: 10.1016/s0967-0645(02)00176-5
    [48] Mann D G, Droop S J M. 1996. 3. Biodiversity, biogeography and conservation of diatoms. Hydrobiologia, 336(1-3): 19–32. doi: 10.1007/bf00010816
    [49] Mann D G, Vanormelingen P. 2013. An inordinate fondness? The number, distributions, and origins of diatom species. Journal of Eukaryotic Microbiology, 60(4): 414–420. doi: 10.1111/jeu.12047
    [50] McQuoid M R, Nordberg K. 2003. The diatom Paralia sulcata as an environmental indicator species in coastal sediments. Estuarine, Coastal and Shelf Science, 56(2): 339–354,
    [51] Medlin L K, Kaczmarska I. 2004. Evolution of the diatoms: V. Morphological and cytological support for the major clades and a taxonomic revision. Phycologia, 43(3): 245–270. doi: 10.2216/i0031-8884-43-3-245.1
    [52] Morel F M M, Price N M. 2003. The biogeochemical cycles of trace metals in the oceans. Science, 300(5621): 944–947. doi: 10.1126/science.1083545
    [53] Musielak M M, Karp-Boss L, Jumars P A, et al. 2009. Nutrient transport and acquisition by diatom chains in a moving fluid. Journal of Fluid Mechanics, 638: 401–421. doi: 10.1017/s0022112009991108
    [54] Oksanen J, Blanchet F G, Kindt R, et al. 2013. Package ‘vegan’. Community Ecology Package, Version,2: 1–295
    [55] Park J S, Alverson A J, Lee J H. 2016b. A phylogenetic re-definition of the diatom genus Bacterosira (Thalassiosirales, Bacillariophyta), with the transfer of Thalassiosira constricta based on morphological and molecular characters. Phytotaxa, 245(1): 1–16. doi: 10.11646/phytotaxa.245.1.1
    [56] Park J S, Jung S W, Ki J S, et al. 2017a. Transfer of the small diatoms Thalassiosira proschkinae and T. spinulata to the genus Minidiscus and their taxonomic re-description. PLoS One, 12(9): e0181980. doi: 10.1371/journal.pone.0181980
    [57] Park J S, Jung S W, Lee S D, et al. 2016a. Species diversity of the genus Thalassiosira (Thalassiosirales, Bacillariophyta) in South Korea and its biogeographical distribution in the world. Phycologia, 55(4): 403–423. doi: 10.2216/15-66.1
    [58] Park J S, Lee S D, Lee J H. 2013. Taxonomic study on the euryhaline Cyclotella (Bacillariophyta) species in Korea. Journal of Ecology and Environment, 36(4): 407–419. doi: 10.5141/ecoenv.2013.407
    [59] Park J S, Yun S M, Lee S D, et al. 2017b. New records of the diatoms (Bacillariophyta) in the brackish and coastal waters of Korea. Korean Society of Environmental Biology, 35(3): 215–226. doi: 10.11626/kjeb.2017.35.3.215
    [60] Peters F, Arin L, Marrasé C, et al. 2006. Effects of small-scale turbulence on the growth of two diatoms of different size in a phosphorus-limited medium. Journal of Marine Systems, 61(3-4): 134–148. doi: 10.1016/j.jmarsys.2005.11.012
    [61] Ravizza M, Hallegraeff G. 2015. Environmental conditions influencing growth rate and stalk formation in the estuarine diatom Licmophora flabellata (Carmichael ex Greville) C. Agardh. Diatom Research, 30(2): 197–208. doi: 10.1080/0269249x.2015.1020071
    [62] Roelofs A K. 1984. Distributional patterns and variation of valve diameter of Paralia sulcata in surface sediments of Southern British Columbia Inlets. Estuarine, Coastal and Shelf Science, 18(2): 165–176,
    [63] Round F E, Crawford R M, Mann D G. 1990. The Diatoms. Cambridge:Cambridge University Press, 1–747
    [64] Sarthou G, Timmermans K R, Blain S, et al. 2005. Growth physiology and fate of diatoms in the ocean: a review. Journal of Sea Research, 53(1-2): 25–42. doi: 10.1016/j.seares.2004.01.007
    [65] Schmidt A. 1874–1959. Atlas der Diatomaceen-Kunde. Leipzig: Reisland
    [66] Seung Y H, Chung J H, Park Y C. 1990. Oceanographic studies related to the tidal front in the mid-Yellow Sea off Korea: physical aspects. The Journal of the Oceanological Society of Korea, 25(2): 84–95
    [67] Simon N, Cras A L, Foulon E, et al. 2009. Diversity and evolution of marine phytoplankton. Comptes Rendus Biologies, 332(2–3): 159–170. doi: 10.1016/j.crvi.2008.09.009
    [68] Sokal R R, Rohlf F J. 1962. The comparison of dendrograms by objective methods. Taxon, 11(2): 33–40. doi: 10.2307/1217208
    [69] Sommer U, Peter K H, Genitsaris S, et al. 2017. Do marine phytoplankton follow Bergmann’s rule sensu lato? Biological Reviews, 92(2): 1011–1026,
    [70] Sournia A, Chrdtiennot-Dinet M J, Ricard M. 1991. Marine phytoplankton: How many species in the world ocean? Journal of Plankton Research, 13(5): 1093–1099,
    [71] Villareal T A, Fryxell G A. 1983. Temperature effects on the valve structure of the bipolar diatoms Thalassiosira antarctica and Porosira glacialis. Polar Biology, 2(3): 163–169. doi: 10.1007/bf00448966
    [72] Wang Baodong, Wang Xiulin, Zhan Run. 2003. Nutrient conditions in the Yellow Sea and the East China Sea. Estuarine, Coastal and Shelf Science, 58(1): 127–136,
    [73] Yamaguchi H, Minamida M, Matsubara T, et al. 2014. Novel blooms of the diatom Asteroplanus karianus deplete nutrients from Ariake Sea coastal waters. Marine Ecology Progress Series, 517: 51–60. doi: 10.3354/meps11014
    [74] Yeo H G, Kang H. 1998. Water quality and phytoplankton community waters of Inchon. Journal of Environmental Science International, 7(3): 321–326
    [75] Yun J Y, Magaard L, Kim K, et al. 2004. Spatial and temporal variability of the North Korean cold water leading to the near-bottom cold water intrusion in Korea Strait. Progress in Oceanography, 60(1): 99–131. doi: 10.1016/j.pocean.2003.11.004
  • 加载中
  • 文章访问数:  33
  • HTML全文浏览量:  10
  • 被引次数: 0
  • 收稿日期:  2020-12-27
  • 录用日期:  2021-03-26
  • 网络出版日期:  2022-04-25