Environmental effects of mariculture in China: An overall study of nitrogen and phosphorus loads

Jihong Zhang Wenguang Wu Yuchen Li Yi Liu Xinmeng Wang

Jihong Zhang, Wenguang Wu, Yuchen Li, Yi Liu, Xinmeng Wang. Environmental effects of mariculture in China: An overall study of nitrogen and phosphorus loads[J]. Acta Oceanologica Sinica. doi: 10.1007/s13131-021-1909-9
Citation: Jihong Zhang, Wenguang Wu, Yuchen Li, Yi Liu, Xinmeng Wang. Environmental effects of mariculture in China: An overall study of nitrogen and phosphorus loads[J]. Acta Oceanologica Sinica. doi: 10.1007/s13131-021-1909-9

doi: 10.1007/s13131-021-1909-9

Environmental effects of mariculture in China: An overall study of nitrogen and phosphorus loads

Funds: The National Key R&D Program of China under contract No. 2020YFA0607603; the Strategic Priority Research Program of the Chinese Academy of Sciences under contract No. XDA23050402; the National Natural Science Foundation of China under contract No. 41776155 and U1906216; the Marine S&T Fund of Shandong Province for Pilot National Laboratory for Marine Science and Technology (Qingdao) under contract No. 2018SDKJ0501-3.
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  Percentage of total production (tons) in typical mariculture systems (A), and the proportion in coastal provinces of China in 2019 (B) (From China Fishery Statistical Yearbook, 2020)

    Figure  2.  The N loads (A) and P loads (B) from the four typical mariculture systems of 10 provinces along with coastal China. (1) A: N loads (tons); B: P loads (tons); (2) Red color represents a positive value, the darker, the larger; green color represents a negative value, and the darker, the smaller.

    Figure  3.  N and P loads flux into the Chinese coast in 2019 (River and sewage’s data from China's Marine Environmental Status Bulletin)

    Table  1.   The waste coefficient of PDC, yield and nutrient release from the main species of the pond mariculture in China in 2019

    Waste sourcesYield/(103 t)Waste coefficient/ (g·kg−1)N release/ (103 t)P release/ (103 t)
    NP
    Takifugu sp.17.47315.510.650.280.02
    Sea bass180.26711.850.861.360.07
    Penaeus vannamei1 144.3701.820.293.140.39
    Penaeus monodon84.0662.040.320.250.03
    Penaeus chinensis38.5831.410.250.050.01
    Penaeus japonicus50.9681.670.310.070.01
    Portunus sp.113.8102.220.960.270.12
    Scylla sp.160.6162.650.110.450.02
    Sea cucumber171.7004.370.10.430.01
    Sea urchin8.2434.980.120.040.00
    Jellyfish89.5763.310.360.290.03
    Others421.4008.780.753.700.32
    Total2481.02710.331.03
    Note: − represents no data.
    下载: 导出CSV

    Table  2.   The waste coefficient of PPC, yield and nutrient release from the main species of the cage mariculture of China in 2019

    SpeciesYield
    /(103 t)
    Waste coefficient/(g·kg−1)N release/ (103 t)P release/(103 t)
    NP
    Pseudosciaena crocea225.5572.0212.0716.242.72
    Rachycentron canadum42.2276.4712.773.230.54
    Seriola sp.30.0076.4712.772.290.38
    Seabream101.2872.0212.077.291.22
    Sciaenops ocellatus70.1972.0212.075.060.85
    Epinephelus sp.183.1376.4712.7714.002.34
    Total652.3748.118.05
    Note: − represents no data.
    下载: 导出CSV

    Table  3.   The N, P, and C contents, N and P removed by harvest of the main species of seaweed of China in 2019

    SpeciesYield/ tN/%P/%C/%N remove/ tP remove/ tC remove/ (103 t)
    Kelp1 461 0581.630.37931.2023 815.255 537.41506.69
    Undaria152 5723.410.3328.812 486.92578.2562.13
    Laver135 2521.880.05541.964 612.09446.3358.15
    Gracilaria293 1791.630.37924.505 511.77161.2598.86
    Others24 4762.310.2530.27565.4061.1910.94
    Total2 066 53736 991.436 784.43736.77
    Note: − represents no data.
    下载: 导出CSV

    Table  4.   The N, P, and C content and N and P removed by harvest of the main species of bivalves of China in 2019

    ItemOysterScallopMusselClamOthersTotal/(103 t)
    W/(106 t)4.831.860.884.171.21
    r0.650.640.750.530.64
    t0.020.110.060.140.04
    N CBivalve-m/%9.2310.519.239.009.92
    P CBivalve-m/%0.100.100.100.540.21
    C CBivalve-m/%0.450.440.460.420.44
    N CBivalve-s/%0.14
    P CBivalve-s/%0.03
    C CBivalve-s/%0.11
    N remove/(103 t)10.7315.704.6231.114.3165.88
    P remove/(103 t)9.874.522.2721.682.854.12
    C remove/(103 t)383.37180.0198.29349.09102.261 112.79
    Note: − represents no data. The implications of the symbols refer to the Section 2.2.
    下载: 导出CSV
  • [1] Aguilar-Manjarrez J, Soto D, Brummett R. 2017. Aquaculture zoning, site selection and area management under the ecosystem approach to aquaculture. A handbook. Rome: FAO, and World Bank Group, 62–395
    [2] Bambaranda B V A S M, Tsusaka T W, Chirapart A, et al. 2019. Capacity of Caulerpa lentillifera in the removal of fish culture effluent in a recirculating aquaculture system. Processes, 7(7): 440. doi: 10.3390/pr7070440
    [3] Bannister R J, Johnsen I A, Hansen P K, et al. 2016. Near- and far-field dispersal modelling of organic waste from Atlantic salmon aquaculture in fjord systems. ICES Journal of Marine Science, 73(9): 2408–2419. doi: 10.1093/icesjms/fsw027
    [4] Bouwman A F, Beusen A H W, Overbeek C C, et al. 2013. Hindcasts and future projections of global inland and coastal nitrogen and phosphorus loads due to finfish aquaculture. Reviews in Fisheries Science, 21(2): 112–156. doi: 10.1080/10641262.2013.790340
    [5] Boyd C E. 2003. Guidelines for aquaculture effluent management at the farm-level. Aquaculture, 226(1–4): 101–112. doi: 10.1016/S0044-8486(03)00471-X
    [6] Brigolin D, Dal Maschio G, Rampazzo F, et al. 2009. An individual-based population dynamic model for estimating biomass yield and nutrient fluxes through an off-shore mussel (Mytilus galloprovincialis) farm. Estuarine, Coastal and Shelf Science, 82(3): 365–376,
    [7] Cao Ling, Wang Weimin, Yang Yi, et al. 2007. Environmental impact of aquaculture and countermeasures to aquaculture pollution in China. Environmental Science and Pollution Research-International, 14(7): 452–462. doi: 10.1065/espr2007.05.426
    [8] Carballeira C, Cebro A, Villares R, et al. 2018. Assessing changes in the toxicity of effluents from intensive marine fish farms over time by using a battery of bioassays. Environmental Science and Pollution Research, 25(13): 12739–12748. doi: 10.1007/s11356-018-1403-x
    [9] Chen Chao, Lou Yongjiang, Chen Xiaofang. 2013. Study on technology of freshness-keeping of Porphyra haitanensis. Science and Technology of Food Industry, 34(13): 309–312. doi: 10.13386/j.issn1002-0306.2013.13.070
    [10] Chen Yibo, Song Guobao, Zhao Wenxing, et al. 2016. Estimating pollutant loadings from mariculture in China. Marine Environmental Science, 35(1): 1–6,12. doi: 10.13634/j.cnki.mes.2016.01.001
    [11] Christensen P B, Glud R N, Dalsgaard T, et al. 2003. Impacts of longline mussel farming on oxygen and nitrogen dynamics and biological communities of coastal sediments. Aquaculture, 218(1-4): 567–588. doi: 10.1016/S0044-8486(02)00587-2
    [12] Costanzo S D, O’Donohue M J, Dennison W C. 2004. Assessing the influence and distribution of shrimp pond effluent in a tidal mangrove creek in north-east Australia. Marine Pollution Bulletin, 48(5-6): 514–525. doi: 10.1016/j.marpolbul.2003.09.006
    [13] Dame R F. 1996. Ecology of Marine Bivalves: An Ecosystem Approach. Boca Raton: CRC Press, 1–272. doi: 10.1201/9781003040880
    [14] Dempster T, Sanchez-Jerez P, Fernandez-Jover D, et al. 2011. Proxy measures of fitness suggest coastal fish farms can act as population sources and not ecological traps for wild gadoid fish. PLoS One, 6(1): e15646. doi: 10.1371/journal.pone.0015646
    [15] FAO. 2020. The state of world fisheries and aquaculture 2020. Sustainability in action. Rome: FAO, 37–128 https://www.fao.org/state-of-fisheries-aquaculture/en/[2021-03-06]
    [16] Farmaki E G, Thomaidis N S, Pasias I N, et al. 2014. Environmental impact of intensive aquaculture: investigation on the accumulation of metals and nutrients in marine sediments of Greece. Science of the Total Environment, 485–486: 554–562,
    [17] Ferreira J G, Saurel C, Silva J D L E, et al. 2014. Modelling of interactions between inshore and offshore aquaculture. Aquaculture, 426–427: 154–164,doi: 10.1016/j.aquaculture.2014.01.030
    [18] Filgueira R, Guyondet T, Reid G K, et al. 2017. Vertical particle fluxes dominate integrated multi-trophic aquaculture (IMTA) sites: implications for shellfish-finfish synergy. Aquaculture Environment Interactions, 9: 127–143. doi: 10.3354/aei00218
    [19] Gallardi D. 2014. Effects of bivalve aquaculture on the environment and their possible mitigation: a review. Fisheries and Aquaculture Journal, 5(3): 1000105. doi: 10.4172/2150-3508.1000105
    [20] Grant J, Hatcher A, Scott D B, et al. 1995. A multidisciplinary approach to evaluating impacts of shellfish aquaculture on benthic communities. Estuaries, 18(1): 124–144. doi: 10.2307/1352288
    [21] Holmer M. 2010. Environmental issues of fish farming in offshore waters: perspectives, concerns and research needs. Aquaculture Environment Interactions, 1(1): 57–70. doi: 10.3354/aei00007
    [22] Holmer M, Marbá N, Terrados J, et al. 2002. Impacts of milkfish (Chanos chanos) aquaculture on carbon and nutrient fluxes in the Bolinao area, Philippines. Marine Pollution Bulletin, 44(7): 685–696. doi: 10.1016/S0025-326X(02)00048-6
    [23] Islam M S. 2005. Nitrogen and phosphorus budget in coastal and marine cage aquaculture and impacts of effluent loading on ecosystem: review and analysis towards model development. Marine Pollution Bulletin, 50(1): 48–61. doi: 10.1016/j.marpolbul.2004.08.008
    [24] Joesting H M, Blaylock R, Biber P, et al. 2016. The use of marine aquaculture solid waste for nursery production of the salt marsh plants Spartina alterniflora and Juncus roemerianus. Aquaculture Reports, 3: 108–114. doi: 10.1016/j.aqrep.2016.01.004
    [25] Liu Chunxiang, Zou Dinghui, Liu Zhiwei, et al. 2020. Ocean warming alters the responses to eutrophication in a commercially farmed seaweed, Gracilariopsis lemaneiformis. Hydrobiologia, 847(3): 879–893. doi: 10.1007/s10750-019-04148-2
    [26] Ma Yesheng, Xu Zhongneng, Lin Xiaotao, et al. 2010. Sources and spatial distribution of environmental nitrogen and phosphorus loading of shrimp farming in the coast of Zhelin Bay. Journal of Hydroecology, 3(2): 23–27. doi: 10.15928/j.1674-3075.2010.02.003
    [27] Meier H E M, Eilola K, Almroth-Rosell E, et al. 2019. Correction to: disentangling the impact of nutrient load and climate changes on Baltic Sea hypoxia and eutrophication since 1850. Climate Dynamics, 53(1-2): 1167–1169. doi: 10.1007/s00382-018-4483-x
    [28] National Pollution Source Census. 2009. The first National Pollution Source Census: Manual of Producing and Blowdown Coefficient of Aquaculture Pollutants. Beijing:The Calculation Project Team of Producing and Blowdown Coefficient of Aquaculture Pollutants for the First National Pollution Source Census, 1–100
    [29] National Pollution Survey of China. 2009. The first National Pollution Survey: Manual of Producing and Discharge Coefficient of Aquaculture Pollutants. Beijing:Chinese Academy of Fishery Sciences, 1–100
    [30] Newell R I E. 2004. Ecosystem influences of natural and cultivated populations of suspension-feeding bivalve molluscs: a review. Journal of Shellfish Research, 23(1): 51–61
    [31] Nichols C R, Zinnert J, Young D R. 2019. Degradation of coastal ecosystems: causes, impacts and mitigation efforts. In: Wright L D, Nichols C R, eds. Tomorrow’s Coasts: Complex and Impermanent. Cham: Springer, 119–136. doi: 10.1007/978-3-319-75453-6_8
    [32] Nixon S W, Ammerman J W, Atkinson L P, et al. 1996. The fate of nitrogen and phosphorus at the land-sea margin of the North Atlantic Ocean. Biogeochemistry, 35(1): 141–180. doi: 10.1007/BF02179826
    [33] Oh E S, Edgar G J, Kirkpatrick J B, et al. 2015. Broad-scale impacts of salmon farms on temperate macroalgal assemblages on rocky reefs. Marine Pollution Bulletin, 98(1–2): 201–209. doi: 10.1016/j.marpolbul.2015.06.049
    [34] Price C, Black K D, Hargrave B T, et al. 2015. Marine cage culture and the environment: effects on water quality and primary production. Aquaculture Environment Interactions, 6(2): 151–174. doi: 10.3354/aei00122
    [35] Richard M, Archambault P, Thouzeau G, et al. 2007. Influence of suspended scallop cages and mussel lines on pelagic and benthic biogeochemical fluxes in Havre-aux-Maisons Lagoon, Îles-de-la-Madeleine (Quebec, Canada). Canadian Journal of Fisheries and Aquatic Sciences, 64(11): 1491–1505. doi: 10.1139/f07-116
    [36] Sarà G, Lo Martire M, Sanfilippo M, et al. 2011. Impacts of marine aquaculture at large spatial scales: evidences from N and P catchment loading and phytoplankton biomass. Marine Environmental Research, 71(5): 317–324. doi: 10.1016/j.marenvres.2011.02.007
    [37] Shen Gongming, Huang Ying, Mu Xiyan, et al. 2018. Aquaculture pollution discharge measurement and status analysis based on statistical yield. Chinese Agricultural Science Bulletin, 34(2): 123–129
    [38] Sun Ke, Zhang Jihong, Lin Fan, et al. 2021. Evaluating the growth potential of a typical bivalve-seaweed integrated mariculture system—a numerical study of Sungo Bay, China. Aquaculture, 532: 736037. doi: 10.1016/j.aquaculture.2020.736037
    [39] Tang Qisheng, Han Dong, Mao Yuze, et al. 2016. Species composition, non-fed rate and trophic level of Chinese aquaculture. Journal of Fishery Sciences of China, 23(4): 729–758. doi: 10.3724/SP.J.1118.2016.16113
    [40] Tang Qisheng, Zhang Jihong, Fang Jianguang. 2011. Shellfish and seaweed mariculture increase atmospheric CO2 absorption by coastal ecosystems. Marine Ecology Progress Series, 424: 97–104. doi: 10.3354/meps08979
    [41] Tidwell J. 2012. Aquaculture Production Systems. Ames, Iowa: John Wiley & Sons Inc, 51–63
    [42] Wang Junjie, Beusen A H W, Liu Xiaochen, et al. 2020. Aquaculture production is a large, spatially concentrated source of nutrients in Chinese freshwater and coastal seas. Environmental Science & Technology, 54(3): 1464–1474. doi: 10.1021/acs.est.9b03340
    [43] Wang Xinxin, Olsen L M, Reitan K I, et al. 2012. Discharge of nutrient wastes from salmon farms: environmental effects, and potential for integrated multi-trophic aquaculture. Aquaculture Environment Interactions, 2(3): 267–283. doi: 10.3354/aei00044
    [44] Wu R S S. 1995. The environmental impact of marine fish culture: Towards a sustainable future. Marine Pollution Bulletin, 31(4-12): 159–166. doi: 10.1016/0025-326X(95)00100-2
    [45] Xiao Xi, Agusti S, Lin Fang, et al. 2017. Nutrient removal from Chinese coastal waters by large-scale seaweed aquaculture. Scientific Reports, 7(1): 46613. doi: 10.1038/srep46613
    [46] Yang Yufeng, Fei Xiugeng. 2003. Prospects for bioremediation of cultivation of large-sized seaweed in eutrophic mariculture areas. Journal of Ocean University of Qingdao, 33(1): 53–57
    [47] Yang Ping, Lai D Y F, Jin Baoshi, et al. 2017. Dynamics of dissolved nutrients in the aquaculture shrimp ponds of the Min River estuary, China: Concentrations, fluxes and environmental loads. Science of the Total Environment, 603–604: 256–267,
    [48] Zhang Ying, Bleeker A, Liu Junguo. 2015. Nutrient discharge from China’s aquaculture industry and associated environmental impacts. Environmental Research Letters, 10(4): 045002. doi: 10.1088/1748-9326/10/4/045002
    [49] Zhang Jihong, Hansen P K, Wu Wenguang, et al. 2020. Sediment-focused environmental impact of long-term large-scale marine bivalve and seaweed farming in Sungo Bay, China. Aquaculture, 528: 735561. doi: 10.1016/j.aquaculture.2020.735561
  • 加载中
计量
  • 文章访问数:  60
  • HTML全文浏览量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-08
  • 录用日期:  2021-08-30
  • 网络出版日期:  2022-03-16

目录

    /

    返回文章
    返回