Distribution and invasion of Spartina alterniflora within the Jiaozhou Bay monitored by remote sensing image

Jianbu Wang Zhaoyang Lin Yuanqing Ma Guangbo Ren Zijun Xu Xiukai Song Yi Ma Andong Wang Yajie Zhao

Jianbu Wang, Zhaoyang Lin, Yuanqing Ma, Guangbo Ren, Zijun Xu, Xiukai Song, Yi Ma, Andong Wang, Yajie Zhao. Distribution and invasion of Spartina alterniflora within the Jiaozhou Bay monitored by remote sensing image[J]. Acta Oceanologica Sinica. doi: 10.1007/s13131-021-1907-y
Citation: Jianbu Wang, Zhaoyang Lin, Yuanqing Ma, Guangbo Ren, Zijun Xu, Xiukai Song, Yi Ma, Andong Wang, Yajie Zhao. Distribution and invasion of Spartina alterniflora within the Jiaozhou Bay monitored by remote sensing image[J]. Acta Oceanologica Sinica. doi: 10.1007/s13131-021-1907-y

doi: 10.1007/s13131-021-1907-y

Distribution and invasion of Spartina alterniflora within the Jiaozhou Bay monitored by remote sensing image

Funds: The National Natural Science Foundation of China under contract Nos 42076189, 41206172 and 61601133; the Natural Science Foundation of Beijing under contract No. JQ20021; the Remote Sensing Monitoring Project of Geographical Elements in Shandong Yellow River Delta National Nature Reserve—the Remote Sensing Monitoring Technology Project of S. alterniflora in Shandong Province in 2020.
More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  Study area in the Jiaozhou Bay, Shandong Peninsula, China. Area A is Nvgukou, including the Moshui River Estuary, Baisha River Estuary and tidal flat on the east side of Hongdao; Area B is the Dagu River Estuary; Area C is the Yang River Estuary; and Area D is the Lianwan River Estuary.

    Figure  2.  Field survey sites (a–b; green dots) and vegetation photographs (c–g). c. dense growth of Spartina alterniflora on the tidal flat; d. Spartina anglica mixed with S. alterniflora, which is mainly distributed in the Dagu River Estuary; e. densely distributed S. alterniflora blocking the river channel; f. S. alterniflora occupying the growing area of Phragmites australis; g. Suaeda salsa near S. alterniflora, mainly in the Yang River Estuary and the Moshui River Estuary.

    Figure  3.  Data preparation and experimental process.

    Figure  4.  Network structure of the deep convolutional neural network

    Figure  5.  Remote sensing monitoring results of Spartina alterniflora over time in the Jiaozhou Bay. a. S. alterniflora distribution in the Yang River Estuary and Dagu River Estuary in 2002, 2012, 2014 and 2019; b. S. alterniflora distribution in Nvgukou in 2013, 2015, 2017 and 2019; c. S. alterniflora distribution in the Lianwan River Estuary in 1988, 2013 and 2015 and 2019.

    Figure  6.  Bar chart of changes in the area of Spartina alterniflora in the Jiaozhou Bay, 1988–2019. The gray color shows intermittent monitoring before 2019. The blue color shows annual monitoring after 2012.

    Figure  7.  Bar chart of Spartina alterniflora area in different distribution areas in the Jiaozhou Bay. Green shows the area of S. alterniflora each year in the Yang River Estuary; black shows the area of S. alterniflora near Nvgukou; blue and red represent the area of S. alterniflora and S. anglica in the Dagu River Estuary and Lianwan River Estuary, respectively.

    Figure  8.  Spartina alterniflora distribution from the Gaofen-1 WFV image and field pictures near the western end of Jiaozhou Bay Bridge. The red features in the image are S. alterniflora. The site conditions of the beach at A and B are shown on the right.

    Figure  9.  Invasion process of S. alterniflora on the east tidal flat of Hongdao. a. the invasion of Spartina alterniflora through seed. The initial stage shows scattered S. alterniflora seedlings. b. S. alterniflora starts root propagation after the seed invasion and forms a large number of patches. The patches are almost circular and spaced apart from each other. c. S. alterniflora multiplies through seeds and roots to connect the patches and finally completes the occupation of the tidal flat.

    Figure  10.  Scattered Spartina anglica at the Dagu River Estuary and S. alterniflora invading in the S. anglica growing area. a. the Gaofen-1 WFV satellite image and the photographs of S. anglica invaded by S. alterniflora. b. a mixed area of S. anglica and S. alterniflora taken at the scene. The taller plants are S. alterniflora, the smaller plants are S. anglica.

    Table  1.   Details of satellite images used in this analysis

    Image nameImaging timeSpace resolution/m
    Landsat 5 TM1988– 200830
    Landsat 7 ETM+2012– 201430
    Landsat 8 OLI2015– 201915
    Gaofen-1 WFV2014– 201916
    下载: 导出CSV

    Table  2.   GF-1 data classification results (%) of the Jiaozhou Bay in 2019.

    MethodSpartina altemifloraSurroundingOARecallPrecisionF1-score
    DCNN98.7598.9798.9798.7560.2774.85
    SVM29.5599.9998.9029.5598.3045.44
    RF98.5598.4498.3995.6349.2164.99
    Basic CNN98.5598.4498.3398.5548.1764.71
    DCNN (no)99.1297.0497.0899.1234.6351.33
    SVM (no)29.5399.9998.9029.5398.3045.42
    RF (no)95.5798.5198.4695.5750.2866.57
    Basic CNN (no)98.2998.2998.2998.2947.6564.18
    Note: OA, DCNN, SVM, RF, CNN blod represents; "no" means that the vegetation index is not used.
    下载: 导出CSV

    Table  3.   Classification results (%) of the Jiaozhou Bay images from different satellites in different years.

    MethodSpartina altemifloraSurroundingOARecallPrecisionF1-score
    DCNN (R8 2017)98.1298.9098.8398.1247.0863.63
    DCNN (L8 2017)95.2497.9397.9195.2425.0439.65
    DCNN (L7 2017)88.2498.2798.2088.2427.0141.36
    Note: OA, DCNN; R8 refers to the image upsampled by Landsat8 to a spatial resolution of 15 m. L8 and L7 refer to Landsat 8 and Landsat 7, respectively.
    下载: 导出CSV
  • [1] Breiman L. 2001. Random forests. Machine Learning, 45(1): 5–32. doi: 10.1023/A:1010933404324
    [2] Brusati E D, Grosholz E D. 2007. Effect of native and invasive cordgrass on Macoma petalum density, growth, and isotopic signatures. Estuarine, Coastal and Shelf Science, 71(3–4): 517–522
    [3] Callaway J C, Josselyn M N. 1992. The introduction and spread of smooth cordgrass (Spartina alterniflora) in South San Francisco Bay. Estuaries, 15(2): 218–226. doi: 10.2307/1352695
    [4] Chung C H. 1993. Thirty years of ecological engineering with Spartina plantations in China. Ecological Engineering, 2(3): 261–289. doi: 10.1016/0925-8574(93)90019-C
    [5] Daehler C C, Strong D R. 1996. Status, prediction and prevention of introduced cordgrass Spartina spp. invasions in Pacific estuaries, USA. Biological Conservation, 78(1–2): 51–58. doi: 10.1016/0006-3207(96)00017-1
    [6] Davis M A, Thompson K. 2000. Eight ways to be a Colonizer; two ways to be an invader: a proposed nomenclature scheme for invasion ecology. Bulletin of the Ecological Society of America, 81(3): 226–230
    [7] Fan Jianyong. 2005. Monitoring dynamic changes of coastline around Qingdao and its adjacent coastal zone using remote sensing (in Chinese)[dissertation]. Qingdao: The Institute of Oceanology, Chinese Academy of Sciences
    [8] Hsu Chih–Wei, Chang Chih–Chang, Lin Chih–Jen. 2003. A practical guide to support vector classification. Taiwan, China: Department of Computer Science and Information Engineering, National Taiwan University
    [9] Huang Huamei, Zhang Liquan. 2007. A study of the population dynamics of Spartina alterniflora at Jiuduansha shoals, Shanghai, China. Ecological Engineering, 29(2): 164–172. doi: 10.1016/j.ecoleng.2006.06.005
    [10] Huete A R. 1988. A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment, 25(3): 295–309. doi: 10.1016/0034-4257(88)90106-X
    [11] Jordan C F. 1969. Derivation of leaf-area index from quality of light on the forest floor. Ecology, 50(4): 663–666. doi: 10.2307/1936256
    [12] Li Yi, Chen Yining, Li Yan. 2017. Remote sensing analysis of the changes in the ecotone of mangrove forests and Spartina alterniflora saltmarshes. Marine Science Bulletin, 36(3): 348–360
    [13] Li Xiang, Li Wei, Xu Xiaodong, et al. 2018. CascadeNet: modified resnet with cascade blocks. In: 2018 24th International Conference on Pattern Recognition. Beijing: IEEE, 483–488
    [14] Li Jingmei, Wang Xiaoling. 2013. Wetland reclamation and habitat damage assessment in Jiaozhou bay. Resources Science, 35(1): 59–65
    [15] Li Hepeng, Zhang Liquan. 2008. An experimental study on physical controls of an exotic plant Spartina alterniflora in Shanghai, China. Ecological Engineering, 32(1): 11–21. doi: 10.1016/j.ecoleng.2007.08.005
    [16] Lin Wenpeng, Chen Guangsheng, Guo Pupu, et al. 2015. Remote-sensed monitoring of dominant plant species distribution and dynamics at Jiuduansha wetland in Shanghai, China. Remote Sensing, 2015, 7(8): 10227–10241
    [17] Lu Feng, Yang Junfang. 2018. Remote sensing monitoring and analysis of Spartina alterniflora based on Landsat 8 OLI satellite data—taken the Shandong Yellow River Delta National Nature Reserve as an example. Shandong Forestry Science and Technology, 48(1): 29–32
    [18] Ma Xu, Yan Jiaguo, Wang Fangfang, et al. 2019. Trait and density responses of Spartina alterniflora to inundation in the Yellow River Delta, China. Marine Pollution Bulletin, 146: 857–864. doi: 10.1016/j.marpolbul.2019.07.022
    [19] Maricle B R, Lee R W. 2002. Aerenchyma development and oxygen transport in the estuarine cordgrasses Spartina alterniflora and S. anglica. Aquatic Botany, 74(2): 109–120. doi: 10.1016/S0304-3770(02)00051-7
    [20] Meng Weiqing, Feagin R A, Innocenti R A, et al. 2020. Invasion and ecological effects of exotic smooth cordgrass Spartina alterniflora in China. Ecological Engineering, 143: 105670. doi: 10.1016/j.ecoleng.2019.105670
    [21] Pearson R L, Miller L D. 1972. Remote mapping of standing crop biomass for estimation of the productivity of the short-grass prairie. In: Proceedings of the Eighth International Symposium on Remote Sensing of Environment. Ann Arbor: ERIM International, 1357–1381
    [22] Qi J, Chehbouni A, Huete A R, et al. 1994. A modified soil adjusted vegetation index. Remote Sensing of Environment, 48(2): 119–126. doi: 10.1016/0034-4257(94)90134-1
    [23] Qin Yingying, Jiang Xiaoxiao, Li Feng, et al. 2009. Morphological plasticity and biomass allocation of Spartina alterniflora lossel in different habitats. Marine Environmental Science, 28(6): 657–659,667
    [24] Qin P, Jing M D, Xie M. 1985. The comparison of three ecotypes of Sparina alterniflora in coastal marshes of Luoyuanwan, Fujian Province. Journal of Nanjing University: Natural Science, 40: 226–236
    [25] Ren Guangbo, Wang Jinjin, Wang Andong, et al. 2019. Monitoring the invasion of smooth cordgrass Spartina alterniflora within the modern Yellow River delta using remote sensing. Journal of Coastal Research, 90(S1): 135–145
    [26] Richardson A J, Weigand C L. 1977. Distinguishing vegetation from soil background information. Photogrammetric Engineering and Remote Sensing, 43(12): 1541–1542
    [27] Shi Xiaoyu, Zhang Ridong, Zhang Wenjing, et al. 2018. Impact of Jiaozhou bay cross-sea bridge on winter ice formation in northern Jiaozhou Bay. Marine Science Bulletin, 37(6): 633–642
    [28] Silinski A, Van Belzen J, Fransen E, et al. 2016. Quantifying critical conditions for seaward expansion of tidal marshes: a transplantation experiment. Estuarine, Coastal and Shelf Science, 169: 227–237
    [29] Sun Samei. 2005. Monitoring of smooth cordgrass invasion by remote sensing in Sandu Bay, Fujian. Journal of Oceanography in Taiwan Strait, 24(2): 223–227
    [30] Tao Yancheng, Pan Lianghao, Fan Hangqing, et al. 2017. Remote sensing monitoring of Spartina alterniflora in coastal intertidal zone of Guangxi. Guangxi Sciences, 24(5): 483–489
    [31] Tian Yanlin, Jia Mingming, Wang Zongming, et al. 2020. Monitoring invasion process of Spartina alterniflora by seasonal Sentinel-2 imagery and an object-based random forest classification. Remote Sensing, 12(9): 1383. doi: 10.3390/rs12091383
    [32] Tucker C J. 1979. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment, 8(2): 127–150. doi: 10.1016/0034-4257(79)90013-0
    [33] Wang Qing, An Shuqing, Ma Zhijun, et al. 2006. Invasive Spartina alterniflora: biology, ecology and management. Acta Phytotaxonomica Sinica, 44(5): 559–588. doi: 10.1360/aps06044
    [34] Yao Hongyan, Liu Pudong, Shi Runhe, et al. 2017. Extracting the transitional zone of Spartina alterniflora and Phragmites australis in the wetland using high-resolution remotely sensed images. Journal of Geo-information Science, 19(10): 1375–1381
    [35] Zhu Yuling, Wang Janbu, Wang Andong, et al. 2019. Remote-sensed monitoring of Spartina alterniflora using deep convolutional neural network method with fusion of shallow features. Marine Sciences, 43(7): 12–22
    [36] Zuo Ping, Liu Chang’an, Zhao Shuhe, et al. 2009. Distribution of Spartina plantations along the China's coast. Haiyang Xuebao (in Chinese), 31(5): 101–111
    [37] Zuo Ping, Zhao Shuhe, Liu Chang’an, et al. 2012. Distribution of Spartina spp. along China’s coast. Ecological Engineering, 40: 160–166. doi: 10.1016/j.ecoleng.2011.12.014
  • 加载中
计量
  • 文章访问数:  34
  • HTML全文浏览量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-21
  • 录用日期:  2021-09-01
  • 网络出版日期:  2022-04-19

目录

    /

    返回文章
    返回