Geological characteristics of the Qiaoyue Seamount and associated ultramafic-hosted seafloor hydrothermal system (~52.1°E, Southwest Indian Ridge)

Yongjin Huang Chunhui Tao Jin Liang Shili Liao Yuan Wang Dong Chen Weifang Yang

Yongjin Huang, Chunhui Tao, Jin Liang, Shili Liao, Yuan Wang, Dong Chen, Weifang Yang. Geological characteristics of the Qiaoyue Seamount and associated ultramafic-hosted seafloor hydrothermal system (~52.1°E, Southwest Indian Ridge)[J]. Acta Oceanologica Sinica. doi: 10.1007/s13131-021-1832-0
Citation: Yongjin Huang, Chunhui Tao, Jin Liang, Shili Liao, Yuan Wang, Dong Chen, Weifang Yang. Geological characteristics of the Qiaoyue Seamount and associated ultramafic-hosted seafloor hydrothermal system (~52.1°E, Southwest Indian Ridge)[J]. Acta Oceanologica Sinica. doi: 10.1007/s13131-021-1832-0

doi: 10.1007/s13131-021-1832-0

Geological characteristics of the Qiaoyue Seamount and associated ultramafic-hosted seafloor hydrothermal system (~52.1°E, Southwest Indian Ridge)

Funds: The National Key Research and Development Program of China under contract No. 2016YFC0304905; the National Natural Science Foundation of China under contract No. 41806076; the Scientific Research Fund of the Second Institute of Oceanography, MNR under contract No. JG1804; the China Ocean Mineral Resources R&D Association (COMRA) Major Project under contract Nos DY135-S1-1-01, DY135-S1-1-02 and DY135-S1-1-09.
More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  Bathymetric map of the Southwest Indian Ridge between the Indomed and Gallieni transform fault (TF), with the location of the Qiaoyue Seamount (a). Inset shows the location of Fig1.a in the SWIR. High-resolution bathymetric map of the Qiaoyue Seamount on the SWIR (The bathymetric data were collected by multi-beam surveys) (b). The red solid line in Fig.1a show the first-order ridge axis between the Indomed TF and Gallieni TF. The white dots in Fig1.b show the epicenter of the study area (data source: http://www.isc.ac.uk/). The red solid line indicates the axis of segment #25 (second-order ridge). The orange dotted line shows the upper limit of a large fault. The second-order segments cited in the text and/or other figures are identified by their numbers, following the nomenclature of Cannat et al. (1999) and Liu (2019). BTJ: Bouvet Triple Junction; RTJ: Rodrigues Triple Junction; CIR: Central Indian Ridge; SEIR: Southeast Indian Ridge.

    Figure  2.  Generalized geological map of the Qiaoyue Seamount, interpreted from the surface geology and locations of photographs features (a); pelagic sediment with ripple marks (the black and red arrows indicate the forward direction of the camera and the direction of the bottom currents, respectively) (b); rock breccia/debris covered with sediments (c); pillow lava covered with sediments (d); a small scarp with exposed rock/breccia (e); serpentinized peridotite and/or serpentine covered with thin-layer sediments (f); suspected hydrothermally altered debris (g).

    Figure  3.  Water column turbidity profile obtained from line 3 (in Fig. 2a) deep-towed survey line and the blue band show the range of the significant water column turbidity anomaly (0.02–0.025 ΔNTU) (a). blue translucent area indicates a potential hydrothermal venting field (the blue solid line shows line 3 survey line trace, while the red solid line indicates the trace of a significant water column turbidity anomaly) (b).

    Figure  4.  Schematic model of hydrothermal system on Qiaoyue Seamount

    Table  1.   Cruise chronology on the Qiaoyue Seamount

    Cruise and LegShipLine No.Date
    The 7th leg of Chinese 20th Cruise (20 VII)DayangYihao20VII-L6SHX5Feb. 5, 2009
    20VII-L7SHX6Feb. 6, 2009
    The 4th leg of Chinese 49th Cruise (49 IV)Xiangyanghong 1049IV-L002SHX04May 15, 2018
    49IV-L003SHX03May 15–16, 2018
    49IV-L003SHX02May 16–17, 2018
    49IV-L005SHX01May 17–18, 2018
    49IV-L009SHX01cMay 25–26, 2018
    49IV-L010SHX02cMay 26–27, 2018
    下载: 导出CSV
  • [1] Allen D E, Seyfried Jr W E. 2004. Serpentinization and heat generation: constraints from Lost City and Rainbow hydrothermal systems. Geochimica et Cosmochimica Acta, 68(6): 1347–1354. doi: 10.1016/j.gca.2003.09.003
    [2] Baker E T, Chen Y J, Morgan J P. 1996. The relationship between near-axis hydrothermal cooling and the spreading rate of mid-ocean ridges. Earth and Planetary Science Letters, 142(1–2): 137–145. doi: 10.1016/0012-821x(96)00097-0
    [3] Baker E T, Edmonds H N, Michael P J, et al. 2004. Hydrothermal venting in magma deserts: the ultraslow‐spreading Gakkel and Southwest Indian Ridges. Geochemistry, Geophysics, Geosystems, 5(8): Q08002. doi: 10.1029/2004gc000712
    [4] Baker E T, German C R. 2004. On the global distribution of hydrothermal vent fields. In: German C R, Lin J, Parson L M, eds. Mid-Ocean Ridges: Hydrothermal Interactions Between the Lithosphere and Oceans. Washington, DC: American Geophysical Union, 245–266, doi: 10.1029/148gm10
    [5] Baker E T, Hémond C, Briais A, et al. 2014. Correlated patterns in hydrothermal plume distribution and apparent magmatic budget along 2500 km of the Southeast Indian Ridge. Geochemistry, Geophysics, Geosystems, 15(8): 3198–3211. doi: 10.1002/2014gc005344
    [6] Baker E T, Resing J A, Haymon R M, et al. 2016. How many vent fields? New estimates of vent field populations on ocean ridges from precise mapping of hydrothermal discharge locations. Earth and Planetary Science Letters, 449: 186–196. doi: 10.1016/j.jpgl.2016.05.031
    [7] Beaulieu S E, Baker E T, German C R, et al. 2013. An authoritative global database for active submarine hydrothermal vent fields. Geochemistry, Geophysics, Geosystems, 14(11): 4892–4905. doi: 10.1002/2013gc004998
    [8] Beaulieu S E, Baker E T, German C R. 2015. Where are the undiscovered hydrothermal vents on oceanic spreading ridges?. Deep Sea Research Part II: Topical Studies in Oceanography, 121: 202–212. doi: 10.1016/j.dsr2.2015.05.001
    [9] Buck W R, Lavier L L, Poliakov A N B. 2005. Modes of faulting at mid-ocean ridges. Nature, 434(7034): 719–723. doi: 10.1038/nature03358
    [10] Canales J P, Tucholke B E, Xu M, et al. 2008. Seismic evidence for large-scale compositional heterogeneity of oceanic core complexes. Geochemistry, Geophysics, Geosystems, 9(8): Q08002. doi: 10.1029/2008GC002009
    [11] Cannat M, Rommevaux-Jestin C, Sauter D. 1999. Formation of the axial relief at the very slow spreading Southwest Indian Ridge (49° to 69°E). Journal of Geophysical Research: Solid Earth, 104(B10): 22825–22843. doi: 10.1029/1999jb900195
    [12] Cannat M, Sauter D, Bezos A, et al. 2008. Spreading rate, spreading obliquity, and melt supply at the ultraslow spreading Southwest Indian Ridge. Geochemistry, Geophysics, Geosystems, 9(4): Q04002. doi: 10.1029/2007gc001676
    [13] Cannat M, Sauter D, Escartín J, et al. 2009. Oceanic corrugated surfaces and the strength of the axial lithosphere at slow spreading ridges. Earth and Planetary Science Letters, 288(1–2): 174–183. doi: 10.1016/j.jpgl.2009.09.020
    [14] Cannat M, Sauter D, Lavier L, et al. 2019. On spreading modes and magma supply at slow and ultraslow mid-ocean ridges. Earth and Planetary Science Letters, 519: 223–233. doi: 10.1016/j.jpgl.2019.05.012
    [15] Cannat M, Sauter D, Mendel V, et al. 2006. Modes of seafloor generation at a melt-poor ultraslow-spreading ridge. Geology, 34(7): 605–608. doi: 10.1130/g22486.1
    [16] Chen Jie, Tao Chunhui, Liang Jin, et al. 2018. Newly discovered hydrothermal fields along the ultraslow-spreading Southwest Indian Ridge around 63°E. Acta Oceanologica Sinica, 37(11): 61–67. doi: 10.1007/s13131-018-1333-y
    [17] Chen Sheng. 2016. The study of hydrothermal plume ore-prospecting criteria on the mid-ocean ridges (in Chinese)[dissertation]. Changchun: Jilin University
    [18] Chen Sheng, Tao Chunhui, Li Huaiming, et al. 2014. A data processing method for MAPR hydrothermal plume turbidity data and its application in the Precious Stone Mountain hydrothermal field. Acta Oceanologica Sinica, 33(8): 34–43. doi: 10.1007/s13131-014-0406-9
    [19] Chen Sheng, Tao Chunhui, Zhou Jianping, et al. 2019. The distribution characteristics of hydrothermal plume in mid-ocean ridge and its indicative role in polymetallic sulfide prospecting. Haiyang Xuebao (in Chinese), 41(8): 1–12. doi: 10.3969/j.issn.0253-4193.2019.08.002
    [20] Coleman R G. 1971. Petrologic and geophysical nature of serpentinites. Geological Society of America Bulletin, 82(4): 897–918. doi: 10.1130/0016-7606(1971)82[897:pagnos]2.0.co;2
    [21] Corliss J B, Dymond J, Gordon L I, et al. 1979. Submarine thermal springs on the Galápagos rift. Science, 203(4385): 1073–1083. doi: 10.1126/science.203.4385.1073
    [22] Dekov V M, Garbe-Schönberg D, Kamenov G D, et al. 2018. Redox changes in a seafloor hydrothermal system recorded in hematite-chalcopyrite chimneys. Chemical Geology, 483: 351–371. doi: 10.1016/j.chemgeo.2018.02.041
    [23] Dick H J B, Lin J, Schouten H. 2003. An ultraslow-spreading class of ocean ridge. Nature, 426(6965): 405–412. doi: 10.1038/nature02128
    [24] Dick H J B, Natland J H, Alt J C, et al. 2000. A long in situ section of the lower ocean crust: results of ODP Leg 176 drilling at the Southwest Indian Ridge. Earth and Planetary Science Letters, 179(1): 31–51. doi: 10.1016/s0012-821x(00)00102-3
    [25] Fouquet Y, Cambon P, Etoubleau J, et al. 2010. Geodiversity of hydrothermal processes along the Mid-Atlantic Ridge and ultramafic-hosted mineralization: a new type of oceanic Cu-Zn-Co-Au volcanogenic massive sulfide deposit. In: Rona P A, Devey C W, Dyment J, et al, eds. Diversity of Hydrothermal Systems on Slow Spreading Ocean Ridges. Washington, DC: American Geophysical Union, 321–367, doi: 10.1029/2008gm000746
    [26] Georgen J E, Lin J, Dick H J B. 2001. Evidence from gravity anomalies for interactions of the Marion and Bouvet hotspots with the Southwest Indian Ridge: effects of transform offsets. Earth and Planetary Science Letters, 187(3–4): 283–300. doi: 10.1016/s0012-821x(01)00293-x
    [27] German C R, Baker E T, Klinkhammer G. 1995. Regional setting of hydrothermal activity. Geological Society, London, Special Publications, 87(1): 3–15. doi: 10.1144/gsl.sp.1995.087.01.02
    [28] German C R, Baker E T, Mevel C, et al. 1998. Hydrothermal activity along the southwest Indian ridge. Nature, 395(6701): 490–493. doi: 10.1038/26730
    [29] German C R, Bowen A, Coleman M L, et al. 2010. Diverse styles of submarine venting on the ultraslow spreading Mid-Cayman Rise. Proceedings of the National Academy of Sciences of the United States of America, 107(32): 14020–14025. doi: 10.1073/pnas.1009205107
    [30] German C R, Petersen S, Hannington M D. 2016. Hydrothermal exploration of mid-ocean ridges: where might the largest sulfide deposits be forming?. Chemical Geology, 420: 114–126. doi: 10.1016/j.chemgeo.2015.11.006
    [31] German C R, Yoerger D R, Jakuba M, et al. 2008. Hydrothermal exploration with the Autonomous Benthic Explorer. Deep Sea Research Part I: Oceanographic Research Papers, 55(2): 203–219. doi: 10.1016/j.dsr.2007.11.004
    [32] Han Xiqiu, Wu Guanghai, Cui R, et al. 2010. Discovery of a hydrothermal sulfide deposit on the Southwest Indian Ridge at 49.2°E. In: American Geophysical Union, Fall Meeting 2010. AGU. San Francisco.
    [33] Hannington M, Jamieson J, Monecke T, et al. 2011. The abundance of seafloor massive sulfide deposits. Geology, 39(12): 1155–1158. doi: 10.1130/g32468.1
    [34] Hasenclever J, Theissen-Krah S, Rüpke L H, et al. 2014. Hybrid shallow on-axis and deep off-axis hydrothermal circulation at fast-spreading ridges. Nature, 508(7497): 508–512. doi: 10.1038/nature13174
    [35] Jian Hanchao, Singh S C, Chen Y J. 2017. Evidence of an axial magma chamber beneath the ultraslow-spreading Southwest Indian Ridge. Geology, 45(2): 143–146. doi: 10.1130/g38356.1
    [36] Kolla V, Bé A W H, Biscaye P E. 1976. Calcium carbonate distribution in the surface sediments of the Indian Ocean. Journal of Geophysical Research, 81(15): 2605–2616. doi: 10.1029/jc081i015p02605
    [37] Li Jiabiao, Jian Hanchao, Chen Y J, et al. 2015. Seismic observation of an extremely magmatic accretion at the ultraslow spreading Southwest Indian Ridge. Geophysical Research Letters, 42(8): 2656–2663. doi: 10.1002/2014gl062521
    [38] Li Huaiming, Tao Chunhui, Yue Xihe, et al. 2020. Enhanced hydrothermal activity on an ultraslow-spreading supersegment with a seismically detected melting anomaly. Marine Geology, 430: 106335. doi: 10.1016/j.margeo.2020.106335
    [39] Liu Chiheng. 2019. Tectono-magmatic characteristics of the Southwest Indian Ridge 46~52.5°E and its dynamic formation mechanism (in Chinese)[dissertation]. Beijing: Peking University
    [40] Liu Zhonglan, Buck W G. 2018. Magmatic controls on axial relief and faulting at mid-ocean ridges. Earth and Planetary Science Letters, 491: 226–237. doi: 10.1016/j.jpgl.2018.03.045
    [41] Liu Zhonglan, Buck W R. 2020. Global trends of axial relief and faulting at plate spreading centers imply discrete magmatic events. Journal of Geophysical Research: Solid Earth, 125(8): e2020JB019465. doi: 10.1029/2020JB019465
    [42] Lowell R P. 2010. Hydrothermal circulation at slow spreading ridges: analysis of heat sources and heat transfer processes. In: Rona P A, Devey C W, Dyment J, et al, eds. Diversity of Hydrothermal Systems on Slow Spreading Ocean Ridges. Washington, DC: American Geophysical Union, 11–26, doi: 10.1029/2008gm000758
    [43] Lowell R P. 2017. A fault-driven circulation model for the Lost City Hydrothermal Field. Geophysical Research Letters, 44(6): 2703–2709. doi: 10.1002/2016GL072326
    [44] MacLeod C J, Searle R C, Murton B J, et al. 2009. Life cycle of oceanic core complexes. Earth and Planetary Science Letters, 287(3–4): 333–344. doi: 10.1016/j.jpgl.2009.08.016
    [45] Manatschal G, Sauter D, Karpoff A M, et al. 2011. The chenaillet ophiolite in the French/Italian alps: an ancient analogue for an oceanic core complex?. Lithos, 124(3–4): 169–184. doi: 10.1016/j.lithos.2010.10.017
    [46] McCave I N, Kiefer T, Thornalley D J R, et al. 2005. Deep flow in the Madagascar-Mascarene Basin over the last 150000 years. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 363(1826): 81–99. doi: 10.1098/rsta.2004.1480
    [47] Melchert B, Devey C W, German C R, et al. 2008. First evidence for high-temperature off-axis venting of deep crustal/mantle heat: The Nibelungen hydrothermal field, southern Mid-Atlantic Ridge. Earth and Planetary Science Letters, 275(1–2): 61–69. doi: 10.1016/j.jpgl.2008.08.010
    [48] Mendel V, Sauter D, Rommevaux-Jestin C, et al. 2003. Magmato-tectonic cyclicity at the ultra‐slow spreading Southwest Indian Ridge: evidence from variations of axial volcanic ridge morphology and abyssal hills pattern. Geochemistry, Geophysics, Geosystems, 4(5): 9102. doi: 10.1029/2002gc000417
    [49] Muller M R, Minshull T A, White R S. 1999. Segmentation and melt supply at the Southwest Indian Ridge. Geology, 27(10): 867–870. doi: 10.1130/0091-7613(1999)027<0867:samsat>2.3.co;2
    [50] Olive J A, Behn M D, Ito G, et al. 2015. Sensitivity of seafloor bathymetry to climate-driven fluctuations in mid-ocean ridge magma supply. Science, 350(6258): 310–313. doi: 10.1126/science.aad0715
    [51] Pertsev A N, Bortnikov N S, Vlasov E A, et al. 2012. Recent massive sulfide deposits of the Semenov ore district, Mid-Atlantic Ridge, 13°31′ N: associated rocks of the oceanic core complex and their hydrothermal alteration. Geology of Ore Deposits, 54(5): 334–346. doi: 10.1134/s1075701512050030
    [52] Petersen S, Kuhn K, Kuhn T, et al. 2009. The geological setting of the ultramafic-hosted Logatchev hydrothermal field (14°45′N, Mid-Atlantic Ridge) and its influence on massive sulfide formation. Lithos, 112(1–2): 40–56. doi: 10.1016/j.lithos.2009.02.008
    [53] Reston T. 2018. Flipping detachments: the kinematics of ultraslow spreading ridges. Earth and Planetary Science Letters, 503: 144–157. doi: 10.1016/j.jpgl.2018.09.032
    [54] Sauter D, Cannat M, Meyzen C, et al. 2009. Propagation of a melting anomaly along the ultraslow Southwest Indian Ridge between 46°E and 52°20′E: interaction with the Crozet hotspot?. Geophysical Journal International, 179(2): 687–699. doi: 10.1111/j.1365-246x.2009.04308.x
    [55] Sauter D, Cannat M, Rouméjon S, et al. 2013. Continuous exhumation of mantle-derived rocks at the Southwest Indian Ridge for 11 million years. Nature Geoscience, 6(4): 314–320. doi: 10.1038/ngeo1771
    [56] Sauter D, Patriat P, Rommevaux-Jestin C, et al. 2001. The Southwest Indian Ridge between 49°15′E and 57°E: focused accretion and magma redistribution. Earth and Planetary Science Letters, 192(3): 303–317. doi: 10.1016/s0012-821x(01)00455-1
    [57] Schmale O, Walter M, von Deimling J S, et al. 2012. Fluid and gas fluxes from the Logatchev hydrothermal vent area. Geochemistry, Geophysics, Geosystems, 13(7): Q07007. doi: 10.1029/2012gc004158
    [58] Sekhar P, Lowell R P. 2015. Numerical modeling of brine formation and serpentinization at the rainbow hydrothermal system. In: American Geophysical Union, Fall Meeting 2015. AGU. San Francisco
    [59] Son J, Pak S J, Kim J, et al. 2014. Tectonic and magmatic control of hydrothermal activity along the slow-spreading Central Indian Ridge, 8°S–17°S. Geochemistry, Geophysics, Geosystems, 15(5): 2011–2020. doi: 10.1002/2013GC005206
    [60] Tao Chunhui, Chen Sheng, Baker E T, et al. 2017. Hydrothermal plume mapping as a prospecting tool for seafloor sulfide deposits: a case study at the Zouyu-1 and Zouyu-2 hydrothermal fields in the southern Mid-Atlantic Ridge. Marine Geophysical Research, 38(1–2): 3–16. doi: 10.1007/s11001-016-9275-2
    [61] Tao Chunhui, Li Huaiming, Huang Wei, et al. 2011. Mineralogical and geochemical features of sulfide chimneys from the 49°39′E hydrothermal field on the Southwest Indian Ridge and their geological inferences. Chinese Science Bulletin, 56(26): 2828–2838. doi: 10.1007/s11434-011-4619-4
    [62] Tao Chunhui, Li Huaiming, Jin Xiaobing, et al. 2014. Seafloor hydrothermal activity and polymetallic sulfide exploration on the southwest Indian ridge. Chinese Science Bulletin, 59(19): 2266–2276. doi: 10.1007/s11434-014-0182-0
    [63] Tao Chunhui, Lin Jian, Guo Shiqin, et al. 2012. First active hydrothermal vents on an ultraslow-spreading center: southwest Indian Ridge. Geology, 40(1): 47–50. doi: 10.1130/G32389.1
    [64] Tao Chunhui, Seyfried Jr W E, Lowell R P, et al. 2020. Deep high-temperature hydrothermal circulation in a detachment faulting system on the ultra-slow spreading ridge. Nature Communications, 11(1): 1300. doi: 10.1038/s41467-020-15062-w
    [65] Tao Chunhui, Wu Guanghai, Ni Jun, et al. 2009. New hydrothermal fields found along the SWIR during the Legs 5-7 of the Chinese DY115-20 Expedition. In: American Geophysical Union, Fall Meeting 2009, AGU. San Francisco
    [66] Tucholke B E, Behn M D, Buck W R, et al. 2008. Role of melt supply in oceanic detachment faulting and formation of megamullions. Geology, 36(6): 455–458. doi: 10.1130/g24639a.1
    [67] Wang Hu, Resing J A, Yan Qiaoyang, et al. 2021. The characteristics of Fe speciation and Fe-binding ligands in the Mariana back-arc hydrothermal plumes. Geochimica et Cosmochimica Acta, 292: 24–36. doi: 10.1016/j.gca.2020.09.016
    [68] Wilcock W S D, Fisher A T. 2004. Geophysical constraints on the subseafloor environment near mid-ocean ridges. In: Wilcock W S D, Delong E F, Kelley D S, et al, eds. The Subseafloor Biosphere at Mid-Ocean Ridges. Washington, DC: American Geophysical Union, 51–74, doi: 10.1029/144gm05
    [69] Yang Weifang, Tao Chunhui, Li Huaiming, et al. 2017. 230Th/238U dating of hydrothermal sulfides from Duanqiao hydrothermal field, Southwest Indian Ridge. Marine Geophysical Research, 38(1–2): 71–83. doi: 10.1007/s11001-016-9279-y
    [70] Yue Xihe, Li Huaiming, Ren Jianye, et al. 2019. Seafloor hydrothermal activity along mid-ocean ridge with strong melt supply: study from segment 27, southwest Indian ridge. Scientific Reports, 9(1): 9874. doi: 10.1038/s41598-019-46299-1
    [71] Zhou Huaiyang, Dick H J B. 2013. Thin crust as evidence for depleted mantle supporting the Marion Rise. Nature, 494(7436): 195–200. doi: 10.1038/nature11842
  • 加载中
计量
  • 文章访问数:  59
  • HTML全文浏览量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-03
  • 录用日期:  2021-03-26
  • 网络出版日期:  2021-07-08

目录

    /

    返回文章
    返回