Modeling calving process of glacier with dilated polyhedral discrete element method

Lu Liu Ji Li Qizhen Sun Chunhua Li Sue Cook Shunying Ji

Lu Liu, Ji Li, Qizhen Sun, Chunhua Li, Sue Cook, Shunying Ji. Modeling calving process of glacier with dilated polyhedral discrete element method[J]. Acta Oceanologica Sinica. doi: 10.1007/s13131-021-1819-x
Citation: Lu Liu, Ji Li, Qizhen Sun, Chunhua Li, Sue Cook, Shunying Ji. Modeling calving process of glacier with dilated polyhedral discrete element method[J]. Acta Oceanologica Sinica. doi: 10.1007/s13131-021-1819-x

doi: 10.1007/s13131-021-1819-x

Modeling calving process of glacier with dilated polyhedral discrete element method

Funds: The National Key R&D Program of China under contract Nos 2016YFC1402705, 2018YFA0605902, 2016YFC1402706 and 2016YFC1401505; the National Natural Science Foundation of China under contract Nos 41576179 and 51639004; the fund of Australian Research Council's Special Research Initiative for Antarctic Gateway Partnership under contract No. SR140300001; the China Postdoctoral Science Foundation under contract No. 2020M670746.
More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  Dilated polyhedral element constructed with the Minkowski sum of an arbitrary polyhedron and a sphere.

    Figure  2.  Construction of glacier with DEM and contact model between bonded elements. The bonding considers the stiffness and viscosity in normal and tangential directions.

    Figure  3.  Constitutive relationship between equivalent stress and deformation in the hybrid failure criterion.

    Figure  4.  Simulation setup of the glacier calving process. a. geometry of the glacier, and b. mesh grids with dilated polyhedron.

    Figure  5.  Statistical probability density distribution of tensile bond strength illustrates the Weibull distribution in this case.

    Figure  6.  Failure of bonds simulated with DPDEM at different times. The crack propagates from the front top to the bottom until the glacier front collapse, the failure bond is colored with red. The deeper color means the larger concentration of failure bonds.

    Figure  7.  Velocity distribution of glacier simulated with DPDEM at different times.

    Figure  8.  Fragment size distribution fitted in double logarithmic space where the exponent D≈1.44.

    Figure  9.  Von Mises stress of the tidewater glacier in the DEM simulation at different times.

    Figure  10.  Normal stress of the tidewater glacier in the DEM simulation at different times.

    Figure  11.  Glacier geometry composed of cubic elements

    Figure  12.  Velocity distribution of glacier simulated using elements of different shapes.

    Figure  14.  Crack propagation in glaciers under different bottom friction coefficients at t = 2.165 s. The failure bond is colored with red, the deeper color means the larger concentration of failure bonds.

    Figure  13.  Geometry of the glacier mesh with triangular elements.

    Figure  15.  Crack propagation in glaciers under different buoyancy conditions at t = 8.66 s. Sea level is counted from the bottom of the glacier front.The failure bond is colored with red, the deeper color means the larger concentration of failure bonds.

    Table  1.   Main parameters in DPDEM simulation of glacier calving

    DefinitionSymbolValueUnit
    Drag force coefficient$ {C_{{\rm{dF}}}} $0.21
    Drag moment coefficient$ {C_{{\rm{dM}}}} $0.141
    Ice density$ {\rho _{{\rm{ice}}}} $1000kg/m3
    Young's modulus$ E $10GPa
    Poisson’s ratio$ \nu $0.31
    Average element size$ {A_{{\rm{ave}}}} $2.5m2
    Element friction coefficient$ \mu $0.31
    Boundary friction coefficient$ {\mu }_{\rm{b}} $0.01
    Under-cut length$L_{\rm{U}}$30m
    Flotation depth$D_{\rm{F}}$20m
    Water depth${\rm{ DW }}$80m
    Glacier size$ H\times L $120×200m×m
    Mode-I fracture energy$ G_{\rm{I}}^c $20N/m
    Mode-II fracture energy$ G_{{\rm{II}}}^c $40N/m
    Power coef. for fracture energyη1.751
    下载: 导出CSV
  • [1] Alley R B, Horgan H J, Joughin I, et al. 2008. A simple law for ice-shelf calving. Science, 322(5906): 1344. doi: 10.1126/science.1162543
    [2] Åström J A, Riikilä T I, Tallinen T, et al. 2013. A particle based simulation model for glacier dynamics. The Cryosphere, 7(5): 1591–1602. doi: 10.5194/tc-7-1591-2013
    [3] Åström J A, Vallot D, Schäfer M, et al. 2014. Termini of calving glaciers as self-organized critical systems. Nature Geoscience, 7(12): 874–878. doi: 10.1038/ngeo2290
    [4] Azevedo N M, Lemos J V. 2005. A generalized rigid particle contact model for fracture analysis. International Journal for Numerical and Analytical Methods in Geomechanics, 29(3): 269–285. doi: 10.1002/nag.414
    [5] Bartholomaus T C, Larsen C F, O’ Neel S. 2013. Does calving matter? Evidence for significant submarine melt. Earth and Planetary Science Letters, 380: 21–30. doi: 10.1016/j.jpgl.2013.08.014
    [6] Bassis, J N, Jacobs S. 2013. Diverse calving patterns linked to glacier geometry. Nature Geoscience, 6(10): 833–836. doi: 10.1038/ngeo1887
    [7] Benn D I, Åström J A. 2018. Calving glaciers and ice shelves. Advances in Physics: X, 3(1): 1513819. doi: 10.1080/23746149.2018.1513819
    [8] Benn D I, Åström J, Zwinger T, et al. 2017. Melt-under-cutting and buoyancy-driven calving from tidewater glaciers: new insights from discrete element and continuum model simulations. Journal of Glaciology, 63(240): 691–702. doi: 10.1017/jog.2017.41
    [9] Benn D I, Warren C R, Mottram R H. 2007. Calving processes and the dynamics of calving glaciers. Earth-Science Reviews, 82(3-4): 143–179. doi: 10.1016/j.earscirev.2007.02.002
    [10] Burton J C, Amundson J M, Cassotto R, et al. 2018. Quantifying flow and stress in ice mélange, the world's largest granular material. Proceedings of the National Academy of Sciences of the United States of America, 115(20): 5105–5110. doi: 10.1073/pnas.1715136115
    [11] Camanho P P, Davila C G, de Moura M F. 2003. Numerical simulation of mixed-mode progressive delamination in composite materials. Journal of Composite Materials, 37(16): 1415–1438. doi: 10.1177/0021998303034505
    [12] Cleary P W. 2010. DEM prediction of industrial and geophysical particle flows. Particuology, 8(2): 106–118. doi: 10.1016/j.partic.2009.05.006
    [13] Cook S, Åström J, Zwinger T, et al. 2018. Modelled fracture and calving on the Totten Ice Shelf. The Cryosphere, 12(7): 2401–2411. doi: 10.5194/tc-12-2401-2018
    [14] Cundall P A, Strack O D L. 1979. A discrete numerical model for granular assemblies. Géotechnique, 29(1): 47–65
    [15] Dempsey J P, Adamson R M, Mulmule S V. 1999. Scale effects on the in-situ tensile strength and fracture of ice. Part II: First-year sea ice at Resolute, N.W.T. International Journal of Fracture, 95(1): 347–366. doi: 10.1023/A:1018650303385
    [16] Dyer M S, Collins C, Hodgeman D, et al. 2013. Computationally assisted identification of functional inorganic materials. Science, 340(6134): 847–852. doi: 10.1126/science.1226558
    [17] Golledge N R, Keller E D, Gomez N, et al. 2019. Global environmental consequences of twenty-first-century ice-sheet melt. Nature, 566(7742): 65–72. doi: 10.1038/s41586-019-0889-9
    [18] Gürtner A, Bjerkås M, Forsberg J, et al. 2010. Numerical modelling of a full scale ice event. In: 20th IAHR International Symposium on Ice. Lahti, Finland: IAHR
    [19] Koehn D, Sachau T. 2014. Two-dimensional numerical modeling of fracturing and shear band development in glacier fronts. Journal of Structural Geology, 61: 133–142. doi: 10.1016/j.jsg.2012.11.002
    [20] Liu Lu, Ji Shunying. 2018. Ice load on floating structure simulated with dilated polyhedral discrete element method in broken ice field. Applied Ocean Research, 75: 53–65. doi: 10.1016/j.apor.2018.02.022
    [21] Liu Lu, Ji Shunying. 2019. Bond and fracture model in dilated polyhedral DEM and its application to simulate breakage of brittle materials. Granular Matter, 21(3): 41. doi: 10.1007/s10035-019-0896-4
    [22] Lu W, Lubbad R, Løset S. 2014. Simulating ice-sloping structure interactions with the cohesive element method. Journal of Offshore Mechanics & Arctic Engineering, 136(3): 16. doi: 10.1115/1.4026959
    [23] Lu G, Third J R, Müller C R. 2015. Discrete element models for non-spherical particle systems: from theoretical developments to applications. Chemical Engineering Science, 127: 425–465. doi: 10.1016/j.ces.2014.11.050
    [24] Ma Gang, Zhou Wei, Chang Xiaolin, et al. 2016. A hybrid approach for modeling of breakable granular materials using combined finite-discrete element method. Granular Matter, 18: 7. doi: 10.1007/s10035-016-0615-3
    [25] Ma Yue, Tripathy C S, Bassis J N. 2017. Bounds on the calving cliff height of marine terminating glaciers. Geophysical Research Letters, 44(3): 1369–1375. doi: 10.1002/2016GL071560
    [26] Mercenier R, Lüthi M P, Vieli A. 2018. Calving relation for tidewater glaciers based on detailed stress field analysis. The Cryosphere, 12(2): 721–739. doi: 10.5194/tc-12-721-2018
    [27] Paavilainen J, Tuhkuri J. 2012. Parameter effects on simulated ice rubbling forces on a wide sloping structure. Cold Regions Science and Technology, 81: 1–10. doi: 10.1016/j.coldregions.2012.04.005
    [28] Paavilainen J, Tuhkuri J, Polojärvi A. 2011. 2D numerical simulations of ice rubble formation process against an inclined structure. Cold Regions Science and Technology, 68(1−2): 20–34. doi: 10.1016/j.coldregions.2011.05.003
    [29] Pelto M S, Warren C R. 1991. Relationship between tidewater glacier calving velocity and water depth at the calving front. Annals of Glaciology, 15: 115–118. doi: 10.3189/S0260305500009617
    [30] Pralong A, Funk M. 2005. Dynamic damage model of crevasse opening and application to glacier calving. Journal of Geophysical Research: Solid Earth, 110(B1): B01309. doi: 10.1029/2004JB003104
    [31] Riikilä T I, Tallinen T, Åström J, et al. 2015. A discrete-element model for viscoelastic deformation and fracture of glacial ice. Computer Physics Communications, 195: 14–22. doi: 10.1016/j.cpc.2015.04.009
    [32] Robel A A. 2017. Thinning sea ice weakens buttressing force of iceberg mélange and promotes calving. Nature Communications, 8(1): 14596. doi: 10.1038/ncomms14596
    [33] Rothrock, D A, Thorndike A S. 1984. Measuring the sea ice floe size distribution. Journal of Geophysical Research: Oceans, 89(C4): 6477–6486. doi: 10.1029/JC089iC04p06477
    [34] Savage S B, Crocker G B, Sayed M, et al. 2000. Size distributions of small ice pieces calved from icebergs. Cold Regions Science and Technology, 31(2): 163–172. doi: 10.1016/S0165-232X(00)00010-0
    [35] Schlemm T, Levermann A. 2019. A simple stress-based cliff-calving law. The Cryosphere, 13: 2475–2488. doi: 10.5194/tc-13-2475-2019
    [36] Todd J, Christoffersen P, Zwinger T, et al. 2018. A full-stokes 3-D calving model applied to a large greenlandic glacier. Journal of Geophysical Research: Earth Surface, 123(3): 410–432. doi: 10.1002/2017JF004349
    [37] van Dongen E C H, Kirchner N, van Gijzen M B, et al. 2018. Dynamically coupling full Stokes and shallow shelf approximation for marine ice sheet flow using Elmer/Ice (v8.3). Geoscientific Model Development, 11(11): 4563–4576. doi: 10.5194/gmd-11-4563-2018
    [38] Zemp M, Huss M, Thibert E, et al. 2019. Global glacier mass changes and their contributions to sea-level rise from 1961 to 2016. Nature, 568(7752): 382–386. doi: 10.1038/s41586-019-1071-0
  • 加载中
图(15) / 表(1)
计量
  • 文章访问数:  64
  • HTML全文浏览量:  32
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-19
  • 录用日期:  2021-01-28
  • 网络出版日期:  2021-06-08

目录

    /

    返回文章
    返回