On the mechanism of the banded structure of drifting macroalgae in the Yellow Sea

Yan Li Fangli Qiao Hongyu Ma Qiuli Shao Zhixin Zhang Guansuo Wang

Yan Li, Fangli Qiao, Hongyu Ma, Qiuli Shao, Zhixin Zhang, Guansuo Wang. On the mechanism of the banded structure of drifting macroalgae in the Yellow Sea[J]. Acta Oceanologica Sinica. doi: 10.1007/s13131-021-1771-9
Citation: Yan Li, Fangli Qiao, Hongyu Ma, Qiuli Shao, Zhixin Zhang, Guansuo Wang. On the mechanism of the banded structure of drifting macroalgae in the Yellow Sea[J]. Acta Oceanologica Sinica. doi: 10.1007/s13131-021-1771-9

doi: 10.1007/s13131-021-1771-9

On the mechanism of the banded structure of drifting macroalgae in the Yellow Sea

Funds: The National Natural Science Foundation of China under contract No. 41821004; the National Program on Global Change and Air-Sea Interaction under contract No. GASI-IPOVAI-05.
More Information
    • 关键词:
    •  / 
    •  / 
    •  
  • Figure  1.  The banded structure of the drifting macroalgae on the sea surface. a. A photograph from a vessel on 6 July, 2008 at (36°00′18″N, 120°29′48″E), the two bands of macroalgae are about 400 m apart; b. a photograph taken from an aircraft at 15:37 on 31 May, 2008 off Qingdao; c. SAR images of the macroalgae obtained from COSMO-2 on 13 July, 2008; and d. subfigure magnified from the box in c. After Qiao et al. (2009).

    Figure  2.  Cloud street in West Australia. From http://www.360doc.com/content/10/1111/15/3566297_68487378.shtml.

    Figure  3.  Location (36°02'N, 121°05'E) of the observed velocity profile. Depth is roughly 30 m.

    Figure  4.  The obtained 1-h interval mean ocean current of u and v from 14:00 to 19:00. The current is Emkan drift current.

    Figure  5.  Three-dimensional vector diagram of the obtained mean flow at 14:00.

    Figure  6.  The observed wind components of u and v (a), and wind speed (b) in June and July of 2008.

    Figure  7.  Distribution of the imaginary part of the complex eigenvalue with varying Reynolds number ($\text{γ} = 1$).

    Figure  8.  The imaginary part of the complex eigenvalue with varying wave number.

    Figure  9.  The imaginary part of complex eigenvalue with varying declination angle.

    Figure  10.  Influence of the ratio between the horizontal and vertical eddy viscosity coefficients

    Figure  11.  Distribution of imaginary part of complex eigenvalue with varying Reynolds number ($\text{γ} = {\rm{50}}$).

    Figure  12.  The simulated stream function.

    Table  1.   Values used in numerical experiments

    ParametersValues
    Reynolds number (${\rm{Re}}$)100, 150, 200, 250, 300, 350, 400, 450
    AH/AV ($\text{γ}$)1:10:1000
    Wave number ($a$)0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0
    Declination angle ($\theta $)/(°)–50, –45, –40, –35, –30, –25, –20, –15, –10, –5, 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50
    下载: 导出CSV
  • [1] Brown R A. 1970. A secondary flow model for the planetary boundary layer. Journal of the Atmospheric Sciences, 27(5): 742–757. doi: 10.1175/1520-0469(1970)027<0742:ASFMFT>2.0.CO;2
    [2] Dong Changming. 1997. Formation mechanism of modern tidal current sand ridges (in Chinese) [dissertation]. Qingdao: Institute of Oceanography, Chinese Academy of Sciences
    [3] Feng Shizuo, Li Fengqi, Li Shaojing. 1999. An Introduction to Marine Science (in Chinese). Beijing: Higher Education Press, 161
    [4] Langmuir I. 1938. Surface motion of water induced by wind. Science, 87(2250): 119–123. doi: 10.1126/science.87.2250.119
    [5] Large W G, McWilliams J C, Doney S C. 1994. Oceanic vertical mixing: a review and a model with a nonlocal boundary layer parameterization. Reviews of Geophysics, 32: 363–403. doi: 10.1029/94RG01872
    [6] Leibovich S. 1983. The form and dynamics of Langmuir circulation. Annual Review of Fluid Mechanics, 15: 391–427. doi: 10.1146/annurev.fl.15.010183.002135
    [7] Lilly D K. 1966. On the instability of Ekman boundary flow. Journal of the Atmospheric Sciences, 23(5): 481–494. doi: 10.1175/1520-0469(1966)023<0481:OTIOEB>2.0.CO;2
    [8] Noh Y, Min H S, Raasch S. 2004. Large eddy simulation of the ocean mixed layer: The effects of wave breaking and Langmuir circulation. Journal of Physical Oceanography, 34(4): 720–735. doi: 10.1175/1520-0485(2004)034<0720:LESOTO>2.0.CO;2
    [9] Pollard R T. 1977. Observations and theories of Langmuir circulations and their role in near surface mixing. In: Angel M, ed. A Voyage of Discovery: George Deacon 70th Anniversary Volume. Oxford: Pergamon, 235–251
    [10] Qiao Fangli, Dai Dejun, Simpson J, et al. 2009. Banded structure of drifting macroalgae. Marine Pollution Bulletin, 58(12): 1792–1795. doi: 10.1016/j.marpolbul.2009.08.006
    [11] Qiao Fangli, Yuan Yeli, Deng Jia, et al. 2016. Wave turbulence interaction induced vertical mixing and its effects in ocean and climate models. Philosophical Transactions of the Royal Society of London Series A-Mathematical, Physical and Engineering Sciences, 374(2065): 20150201. doi: 10.1098/rsta.2015.0201
    [12] Qiao Fangli, Yuan Yeli, Yang Yongzeng, et al. 2004. Wave-induced mixing in the upper ocean: distribution and application to a global ocean circulation model. Geophysical Research Letters, 31(11): L11303
    [13] Thorpe S A. 2004. Langmuir circulation. Annual Review of Fluid Mechanics, 36: 55–79. doi: 10.1146/annurev.fluid.36.052203.071431
    [14] Thorpe S A. 2009. Spreading of floating particles by Langmuir circulation. Marine Pollution Bulletin, 58(12): 1787–1791. doi: 10.1016/j.marpolbul.2009.07.022
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  32
  • HTML全文浏览量:  16
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-14
  • 录用日期:  2020-11-04
  • 修回日期:  2020-11-04
  • 网络出版日期:  2021-07-01

目录

    /

    返回文章
    返回