The crustal nature of the northern Mozambique Ridge, Southwest Indian Ocean

Nelta David Matsinhe Yong Tang Chun-Feng Li Jiabiao Li Estevão Stefane Mahanjane He Li Yinxia Fang

Nelta David Matsinhe, Yong Tang, Chun-Feng Li, Jiabiao Li, Estevão Stefane Mahanjane, He Li, Yinxia Fang. The crustal nature of the northern Mozambique Ridge, Southwest Indian Ocean[J]. Acta Oceanologica Sinica, 2021, 40(7): 170-182. doi: 10.1007/s13131-021-1747-9
Citation: Nelta David Matsinhe, Yong Tang, Chun-Feng Li, Jiabiao Li, Estevão Stefane Mahanjane, He Li, Yinxia Fang. The crustal nature of the northern Mozambique Ridge, Southwest Indian Ocean[J]. Acta Oceanologica Sinica, 2021, 40(7): 170-182. doi: 10.1007/s13131-021-1747-9

doi: 10.1007/s13131-021-1747-9

The crustal nature of the northern Mozambique Ridge, Southwest Indian Ocean

Funds: The National Key R&D Program of China under contract No. 2017YFC1405504; the National Natural Science Foundation of China under contract Nos 41830537, 4176113405 and 41476048.
More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  Tectonic overview of the Mozambique passive margin and Mozambique Ridge (MOZR). a. Bathymetric map (data from GEBCO_2014, https://www.gebco.net/data_and_products/gridded_bathymetry_data/), with 1 000-m contours in black, showing the dominant geological features and magnetic anomalies. In a, the solid yellow lines along the northern MOZR (N-MOZR) mark the location of our seismic and gravity profiles. b. Magnetic anomaly (data from EMAG2, http://geomag.org/models/emag2.html). In b, the black lines indicate the fracture zones along the Mozambique Basin, with one of them crossing the N-MOZR. c. Free-air gravity anomaly map (data from WGM2012, http://bgi.omp.obs-mip.fr/data-products/Grids-and-models/wgm2012). In c, the NW–SE black lines indicate the magnetic anomalies M12 to M0 identified by Goodlad et al. (1982); the W−E black lines indicate the magnetic anomalies M10N and M4, and XR is the extinct spreading center proposed by Marks and Tikku, 2001; the white triangles are Deep Sea Drillhg Project (DSDP) Sites 248 and 249 (Simpson, 1974); the white stars are the rock samples DR1, DR2, DR3, DRQ (Ben-Avraham et al., 1995; Mougenot et al., 1991); the white circles in c are wells located along the Mozambique Coastal Plain; the three red circles show the wells that recovered the Early Cretaceous basalts; and the solid red line refers to the Ariel Graben (AG). d. Bouguer gravity anomaly map (data from WGM2012, http://bgi.omp.obs-mip.fr/data-products/Grids-and-models/wgm2012). S-01: Seismic01; S-02: Seismic02; MozB: Mozambique Mobile Belt; ZC: Zimbabwe Craton; LB: Limpopo Belt; KC: Kaapval Craton; MCP: Mozambique coastal plain; MC: Mozambique Channel; DFZ: Davie Fracture Zone; NNV and SNV: Northern and Southern Natal Valley; MFZ: Mozambique Fracture Zone; MOZR: Mozambique Ridge; N-MOZR: northern Mozambique Ridge; C-MOZR: central Mozambique Ridge; S-MOZR: southern Mozambique Ridge; MB: Mozambique Basin; MP: Madagascar Plateau; MAD: Madagascar.

    Figure  2.  Uninterpreted seismic01 profile from NW–SE, showing the northern Natal Valley, northern Mozambique Ridge, Mozambique Fracture Zone (MFZ) and Mozambique Basin. TWT: two-way travel time.

    Figure  3.  Enlarged section of profile seismic01 showing the high-amplitude SDR in the northern Mozambique Rudge (N-MOER) (a) and its simple seismic interpretation (b). T1, T2 and T3 are stratigraphic unconformities observed in the N-MOZR, and t1 and t2 are unconformities observed in the Mozambique Basin (Gao et al., 2020). TWT: two-way travel time.

    Figure  4.  Seismic profile crossing the Mozambique Fracture Zone, showing the shear zone below the lava flow that separates the low amplitude reflectors from the northern Mozambique Ridge to high amplitude reflectors in the Mozambique Basin. TWT: two-way travel time.

    Figure  5.  Seismic profile crossing the Mozambique Basin. Shows the major fault thought to be a result of tectonic reactivation, diffractions related to deformation phases and the presence of Moho reflection at 9 s TWT. TWT: two-way travel time.

    Figure  6.  Seismic interpretation of profile seismic01 across the NNV, N-MOZR, and MB (a); magnetic (blue line) and bouguer gravity (green line) anomaly profiles along the seismic01 line (b); observed and modeled free-air gravity anomaly (c); and 2D density model for profile seismic01 with density values for each block in unit of g/cm3 (d). In a, TWT is two-way travel time; T1, T2 and T3 are stratigraphic unconformities in the N-MOZR and t1 and t2 are unconformities in the Mozambique Basin (Gao et al., 2020). For b, data are from EMAG2 (http://geomag.org/models/emag2.html; Maus et al., 2009) and WGM2012 (http://bgi.omp.obs-mip.fr/data-products/Grids-and-models/wgm2012; Bonvalot et al., 2012). In d, the solid red lines indicate the seaward dipping reflectors, the red V-shap symbol indicates the presence of an intrusion, and COB indicates continent-ocean boundary.

    Figure  7.  Seismic interpretation of profile seismic02 at the eastern tip of N-MOZR (a); magnetic (blue line) and Bouguer gravity (green line) anomaly profiles along the seismic02 line (b); observed and modeled free-air gravity anomaly (c); and 2D density model of profile seismic02 with density values for each block in g/cm3 (d). In a, TWT is two-way travel time. For b, data are from EMAG2 (http://geomag.org/models/emag2.html; Maus et al., 2009) and WGM2012 (http://bgi.omp.obs-mip.fr/data-products/Grids-and-models/wgm2012; Bonvalot et al., 2012). In d, the solid red lines indicate lava flow, and COB indicates continent-ocean boundary.

  • [1] Antobreh A A, Faleide J I, Tsikalas F, et al. 2009. Rift-shear architecture and tectonic development of the Ghana margin deduced from multichannel seismic reflection and potential field data. Marine and Petroleum Geology, 26(3): 345–368. doi: 10.1016/j.marpetgeo.2008.04.005
    [2] Basile C. 2015. Transform continental margins-Part 1: Concepts and models. Tectonophysics, 661: 1–10. doi: 10.1016/j.tecto.2015.08.034
    [3] Ben-Avraham Z, Hartnady C J H, Le Roex A P. 1995. Neotectonic activity on continental fragments in the southwest Indian Ocean: Agulhas Plateau and Mozambique Ridge. Journal of Geophysical Research: Solid Earth, 100(B4): 6199–6211. doi: 10.1029/94JB02881
    [4] Berndt C, Mjelde R, Planke S, et al. 2001. Controls on the tectono-magmatic evolution of a volcanic transform margin: the Vøring Transform Margin, NE Atlantic. Marine Geophysical Researches, 22(3): 133–152. doi: 10.1023/A:1012089532282
    [5] Bird D. 2001. Shear margins: Continent-ocean transform and fracture zone boundaries. The Leading Edge, 20(2): 150–159. doi: 10.1190/1.1438894
    [6] Blaich O A, Faleide J I, Tsikalas F, et al. 2013. Crustal-scale architecture and segmentation of the South Atlantic volcanic margin. Geological Society, 369: 167–183. doi: 10.1144/SP369.22
    [7] Bonvalot S, Balmino G, Briais A, et al., eds. 2012. World Gravity Map. Paris: Commission for the Geological Map of the World. BGICGMW-CNES-IRD
    [8] Christensen N I, Mooney W. D 1995. Seismic velocity structure and composition of the continental crust: A global view. Journal of Geophysical Research: Solid Earth, 100(B7): 9761–9788. doi: 10.1029/95JB00259
    [9] Coffin M F, Rabinowitz P D. 1992. The Mesozoic east African and Madagascan conjugate continental margins: stratigraphy and tectonics. In: Watkins J S, Zhiqiang F, McMillen K J, eds. Geology and Geophysics of Continental Margins. Galveston, TX: The American Association of Petroleum Geologists Memoir, 53: 207–240
    [10] Cox K G. 1992. Karoo igneous activity, and the early stages of the break-up of Gondwanaland. Geological Society, London, Special Publications, 68(1): 137–148. doi: 10.1144/GSL.SP.1992.068.01.09
    [11] Darracott B W. 1974. On the crustal structure and evolution of southeastern Africa and the adjacent Indian Ocean. Earth and Planetary Science Letters, 24(2): 282–290. doi: 10.1016/0012-821X(74)90106-X
    [12] De Wit M J. 2003. Madagascar: heads it’s a continent, tails it’s an Island. Annual Review of Earth and Planetary Sciences, 31: 231–248. doi: 10.1146/annurev.Earth.31.100901.141337
    [13] Dingle R V, Goodlad S W, Martin A K. 1978. Bathymetry and stratigraphy of the northern natal valley (SW Indian Ocean): a preliminary account. Marine Geology, 28(1–2): 89–106. doi: 10.1016/0025-3227(78)90099-3
    [14] Domingues A, Silveira G, Ferreira A M G, et al. 2016. Ambient noise tomography of the East African Rift in Mozambique. Geophysical Journal International, 204(3): 1565–1578. doi: 10.1093/gji/ggv538
    [15] Eagles G, König M. 2008. A model of plate Kinematics in Gondwana breakup. Geophysical Journal International, 173(2): 703–717. doi: 10.1111/j.1365-246X.2008.03753.x
    [16] Eagles G, Pérez-Díaz L, Scarselli N. 2015. Getting over continent ocean boundaries. Earth-Science Reviews, 151: 244–265. doi: 10.1016/j.earscirev.2015.10.009
    [17] Exploration Consultants Ltd (ECL), Empresa Nacional de Hidrocarbonetos (ENH). 2000. The Petroleum Geology and Hydrocarbon Prospectivity of Mozambique ‘2000’. Mozambique: Institute National Petroleum (Archives), l1: 1–144
    [18] Eldholm O, Skogseid J, Planke S, et al. 1995. Volcanic margin concepts. In: Banda E, Talwani M, Torné M, eds. Rifted Ocean-Continent Boundaries, NATO ASI Series Volume. Dordrecht: Kluwer Academic Press, 1–16
    [19] Fischer M D, Uenzelmann-Neben G, Jacques G, et al. 2017. The Mozambique Ridge: a document of massive multistage magmatism. Geophysical Journal International, 208(1): 449–467. doi: 10.1093/gji/ggw403
    [20] Flores G. 1973. The Cretaceous and Tertiary sedimentary basins of Mozambique and Zululand. In: Sedimentary Basins of the African Coasts. Part II. Paris: Association of African Geological Surveys
    [21] Franke D. 2013. Rifting, lithosphere breakup and volcanism: Comparison of magma-poor and volcanic rifted margins. Marine and Petroleum Geology, 43: 63–87. doi: 10.1016/j.marpetgeo.2012.11.003
    [22] Franke D, Barckhausen U, Baristeas N, et al. 2011. The continent-ocean Transition at the southeastern margin of the South China Sea. Marine and Petroleum Geology, 28(6): 1187–1204. doi: 10.1016/j.marpetgeo.2011.01.004
    [23] Gao Jinyao, Wu Siguo, McIntosh K, et al. 2015. The continent-ocean Transition at the mid-northern margin of the South China Sea. Tectonophysics, 654: 1–19. doi: 10.1016/j.tecto.2015.03.003
    [24] Gao Ya, Stow D, Tang Yong, et al. 2020. Seismic stratigraphy and deep-water sedimentary evolution of the southern Mozambique margin: Central Terrace and Mozambique Fracture Zone. Marine Geology. 427: 1–18, doi: 10.1016/j.margeo.2020.106187
    [25] Geoffroy L. 2001. The structure of volcanic margins: some problematics from the North-Atlantic/Labrador-Baffin system. Marine and Petroleum Geology, 18(4): 463–469. doi: 10.1016/S0264-8172(00)00073-8
    [26] Geoffroy L. 2005. Volcanic passive margins. Comptes Rendus Geoscience, 337(16): 1395–1408. doi: 10.1016/j.crte.2005.10.006
    [27] Gohl K, Uenzelmann-Neben G, Grobys N. 2011. Growth and dispersal of a southeast African large Igneous province. South African Journal of Geology, 114(3–4): 379–386. doi: 10.2113/gssajg.114.3-4.379
    [28] Goodlad S W, Martin A K, Hartnady C J H. 1982. Mesozoic magnetic anomalies in the southern Natal Valley. Nature, 295(5851): 686–688. doi: 10.1038/295686a0
    [29] Green A G. 1972. Seafloor spreading in the Mozambique Channel. Nature Physical Science, 236(63): 19–21. doi: 10.1038/physci236019a0
    [30] Hanyu T, Nogi Y, Fujii M. 2017. Crustal formation and evolution processes in the Natal Valley and Mozambique Ridge, off South Africa. Polar Science, 13: 66–81. doi: 10.1016/j.polar.2017.06.002
    [31] Hastie W W, Watkeys M K, Aubourg C. 2014. Magma flow in dyke swarms of the Karoo LIP: Implications for the mantle plume hypothesis. Gondwana Research, 25(2): 736–755. doi: 10.1016/j.gr.2013.08.010
    [32] Hirsch K K, Scheck-Wenderoth M, Paton D A, et al. 2007. Crustal structure beneath the Orange Basin, South Africa. South African Journal of Geology, 110(2–3): 249–260. doi: 10.2113/gssajg.110.2-3.249
    [33] Jacques G, Hauff F, Hoernle K, et al. 2018. Nature and origin of the Mozambique Ridge, SW Indian Ocean. Chemical Geology, 507: 9–22. doi: 10.1016/j.chemgeo.2018.12.027
    [34] Jokat W, Boebel T, König M, et al. 2003. Timing and geometry of early Gondwana breakup. Journal of Geophysical Research: Solid Earth, 108(B9): 2428. doi: 10.1029/2002JB001802
    [35] Klausen M B. 2009. The Lebombo monocline and associated feeder dyke swarm: Diagnostic of a successful and highly volcanic rifted margin?. Tectonophysics, 468(1–4): 42–62, doi: 10.1016/j.tecto.2008.10.012.
    [36] Klimke J, Franke D, Mahanjane E S, et al. 2018. Tie points for Gondwana reconstructions from a structural interpretation of the Mozambique Basin, East Africa and the Riiser-Larsen Sea, Antarctica. Solid Earth, 9(1): 25–37. doi: 10.5194/se-9-25-2018
    [37] König M, Jokat W. 2010. Advanced insights into magmatism and volcanism of the Mozambique Ridge and Mozambique Basin in the view of new potential field data. Geophysical Journal International, 180(1): 158–180. doi: 10.1111/j.1365-246X.2009.04433.x
    [38] Korenaga J, Holbrook W S, Kent G M, et al. 2000. Crustal structure of the southeast Greenland margin from joint refraction and reflection seismic tomography. Journal of Geophysical Research: Solid Earth, 105(B9): 21591–21614. doi: 10.1029/2000JB900188
    [39] Leinweber V T, Jokat W. 2011. Is there continental crust underneath the northern Natal Valley and the Mozambique Coastal Plains?. Geophysical Research Letters, 38(14): L14303. doi: 10.1029/2011GL047659
    [40] Leinweber V T, Jokat W. 2012. The Jurassic history of the Africa-Antarctica corridor—new constraints from magnetic data on the conjugate continental margins. Tectonophysics, 530/531: 87–101. doi: 10.1016/j.tecto.2011.11.008
    [41] Leinweber V T, Klingerlhoefer F, Neben S, et al. 2013. The crustal structure of the Central Mozambique continental margin - Wide-angle seismic, gravity and magnetic study in the Mozambique Channel, Eastern Africa. Tectonophysics, 599: 170–196. doi: 10.1016/j.tecto.2013.04.015
    [42] Li C, Song T. 2012. Magnetic recording of the cenozoic oceanic crustal accretion and evolution of the South China Sea Basin. Chinese Science Bulletin, 57(24): 3156–3181. doi: 10.1007/S11434-012-5063-9
    [43] Ljones F, Kuwano A, Mjelde R, et al. 2004. Crustal transect from the North Atlantic Knipovich Ridge to the Svalbard margin West of Hornsund. Tectonophysics, 378: 17–41. doi: 10.1016/j.tecto.2003.10.003
    [44] Lorenzo J M, Mutter J C, Larson R L. 1991. Development of the continent-ocean transform boundary of the southern Exmouth Plateau. Geology, 19(8): 843–846. doi: 10.1130/0091-7613(1991)019<0843:DOTCOT>2.3.CO;2
    [45] Lorenzo J M, Wessel P. 1997. Flexure across a continent-ocean fracture zone: the northern Falkland/Malvinas Plateau, South Atlantic. Geo-Marine Letters, 17(1): 110–118. doi: 10.1007/s003670050015
    [46] Lyakhovsky V, Ben-Avraham Z, Reznikov M. 1994. Stress distribution over the Mozambique Ridge. Tectonophysics, 240(1–4): 21–27. doi: 10.1016/0040-1951(94)90261-5
    [47] Müller C O. 2017. The Central Mozambique continental margin: Its tectonic evolution as the centrepiece of the initial Gondwana break-up [dissertation]. Germany: University of Bremen
    [48] Mahanjane E S. 2012. A geotectonic history of the northern Mozambique Basin including the Beira High— A contribution for the understanding of its development. Marine and Petroleum Geology, 36(1): 1–12. doi: 10.1016/j.marpetgeo.2012.05.007
    [49] Mahanjane E S. 2014. The evolution of the East African margin offshore Mozambique: Geotectonic history and petroleum system analysis [dissertation]. Hannover: Gottfried Wilhelm Leibniz Universität Hannover. https://d-nb.info/1058560549/04.
    [50] Maia M, Diament M, Recq M. 1990. Isostatic response of the lithosphere beneath the Mozambique Ridge (SW Indian Ocean) and geodynamic implications. Geophysical Journal International, 100(3): 337–348. doi: 10.1111/j.1365-246X.1990.tb00689.x
    [51] Marks K M, Tikku A A. 2001. Cretaceous reconstructions of East Antarctica, Africa and Madagascar. Earth and Planetary Science Letters, 186(3-4): 479–495. doi: 10.1016/S0012-821X(01)00262-X
    [52] Martin A K, Hartnady C J H. 1986. Plate tectonic development of the South-West Indian Ocean: a revised reconstruction of East Antarctica and Africa. Journal of Geophysical Research: Solid Earth, 91(B5): 4767–4786. doi: 10.1029/JB091iB05p04767
    [53] Maus S, Barckhausen U, Berkenbosch H, et al. 2009. EMAG2: A 2–arc–min resolution earth magnetic anomaly grid compiled from satellite, airborne, and marine magnetic measurements. Geochemistry, Geophysics, Geosystems, 10(8): 1–12. doi: 10.1029/2009GC002471
    [54] Menzies M A, Klemperer S L, Ebinger C J, et al. 2002. Characteristics of volcanic rifted margins. In: Menzies M A, Klemperer S L, Ebinger C J, et al., eds. Volcanic Rifted Margins. Colorado: Geological Society of America, 362: 1–14
    [55] Minshull T A. 2009. Geophysical characterisation of the ocean-continent Transition at magma-poor rifted margins. Comptes Rendus Geoscience, 341(5): 382–393. doi: 10.1016/j.crte.2008.09.003
    [56] Mjelde R, Raum T, Murai Y, et al. 2007. Continent-ocean-transitions: Review, and a new tectono-magmatic model of the Voring Plateau, NE Atlantic. Journal of Geodynamics, 43(3): 374–392. doi: 10.1016/j.jog.2006.09.013
    [57] Mjelde R, Raum T, Myhren B, et al. 2005. Continent-ocean transition on the Voring Plateau, NE Atlantic, derived from densely sampled ocean bottom seismometer data. Journal of Geophysical Research: Solid Earth, 110(B5): B05101. doi: 10.1029/2004JB003026
    [58] Mougenot D, Gennesseaux M, Hernandez J, et al. 1991. La ride du Mozambique (Océan Indein): un fragment continental individualisé lors du coulissement de lAmérique et de lAntarctique le long de de lAfrque de lEst?. Comptes Rendus de l’ Académie des Sciences, 312: 655–662
    [59] Moulin M, Aslanian D, Evain M, et al. 2019. Gondwana breakup: messages from the North Natal Valley. Terra Nova, 32(3): 205–214. doi: 10.1111/TER.12448
    [60] Mueller C O, Jokat W. 2018. The initial Gondwana break-up: A synthesis based on new potential field data of the Africa-Antarctica Corridor. Tectonophysics, 750: 301–328. doi: 10.1016/j.tecto.2018.11.008
    [61] Mueller C O, Jokat W, Schreckenberger B. 2016. The crustal structure of Beira High, central Mozambique-Combined investigation of wide-angle seismic and potential field data. Tectonophysics, 683: 233–254. doi: 10.1016/j.tecto.2016.06.028
    [62] Nairn A E M, Lerche I, Iliffe J E. 1991. Geology, basin analysis, and hydrocarbon potential of Mozambique and the Mozambique Channel. Earth-Science Reviews, 30(1–2): 81–123. doi: 10.1016/0012-8252(91)90014-7
    [63] Nguyen L C, Hall S A, Bird D E, et al. 2016. Reconstruction of the East Africa and Antarctica continental margins. Journal of Geophysical Research: Solid Earth, 121(6): 4156–4179. doi: 10.1002/2015JB012776
    [64] Rabinowitz P D, Coffin M F, Falvey D. 1983. The separation of Madagascar and Africa. Science, 220(4592): 67–69. doi: 10.1126/science.220.4592.67
    [65] Reeves C. 2014. The position of Madagascar within Gondwana and its movements during Gondwana dispersal. Journal of African Earth Sciences, 94: 45–57. doi: 10.1016/j.jafrearsci.2013.07.011
    [66] Reeves C. 2009. Re-examining the evidence from plate-tectonics for the initiation of Africa’s passive margins. London: Geological Society of Houston/Petroleum Exploration Society of Great Britain, 9–10: 1–4
    [67] Reeves C, De Wit M. 2000. Making ends meet in Gondwana: retracing the transforms of the Indian Ocean and reconnecting continental shear zones. Terra Nova, 12(6): 271–280
    [68] Reeves C, Mahanjane E S. 2013. Mozambique and its role in the downfall of Gondwana. London: Geological Society of Houston/Petroleum Exploration Society of Great Britain, 11–12: 1–4
    [69] Reeves C V, Teasdale J P, Mahanjane E S. 2016. Insight into the Eastern Margin of Africa from a new tectonic model of the Indian Ocean. The Geological Society of London, Special Publications, 431(1): 299–322. doi: 10.1144/SP431.12
    [70] Riley T R, Knight K. B 2001. Age of pre-break-up Gondwana magmatism. Antarctic Science, 13(2): 99–110. doi: 10.1017/S0954102001000177
    [71] Salman G, Abdula I. 1995. Development of the Mozambique and Ruvuma sedimentary basins, offshore Mozambique. Sedimentary Geology, 96(1/2): 7–41. doi: 10.1016/0037-0738(95)00125-R
    [72] Senkans A, Leroy S, D’Acremont E, et al. 2019. Polyphase rifting and break-up of the central Mozambique margin. Marine and Petroleum Geology, 100: 412–433. doi: 10.1016/j.marpetgeo.2018.10.035
    [73] Simpson E S W, Schlich R, Gieskes J M, et al. 1974. Initial Reports of the Deep Sea Drilling Project. Washington, DC, USA: US Government Printing Office, 25: 259–346
    [74] Sutra E, Manatschal G, Mohn G, et al. 2013. Quantification and restoration of extensional deformation along the western Iberia and newfoundland rifted margins, Geochemistry, Geophysics, Geosystems, 14(8): 2575-2597, doi: 10.1002/ggge.20135
    [75] Svensen H, Corfu F, Polteau S, et al. 2012. Rapid magma emplacement in the Karoo Large Igneous Province. Earth and Planetary Science Letters, 325-326: 1–9. doi: 10.1016/j.jpgl.2012.01.015
    [76] Taylor B, Hayes D E. 1983. Origin and history of the South China Sea basin. In: Hayes D E, ed. The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands. Washington, DC, USA: Geophysical Monograph Series: 23–56
    [77] Thompson J O. 2017. The opening of the Indian Ocean: what is the impact on the East African, Madagascar and Antarctic margins, and what are the origins of the aseismic ridges? (in Franch) [dissertation]. Rennes: Université De Rennes
    [78] Thompson J O, Moulin M, Aslanian D, et al. 2019. New starting point for the Indian Ocean: Second phase of breakup for Gondwana. Earth-Science Reviews, 191: 26–56. doi: 10.1016/j.earscirev.2019.01.018
    [79] Tikku A A, Marks K M, Kovacs L C. 2002. An Early Cretaceous extinct spreading center in the northern Natal Valley. Tectonophysics, 347(1/3): 87–108. doi: 10.1016/S0040-1951(01)00239-6
    [80] Voss M, Jokat W. 2007. Continent-ocean transition and voluminous magmatic underplating derived from P-wave velocity modelling of the East Greenland continental margin. Geophysical Journal International, 170(2): 580–604. doi: 10.1111/j.1365-246X.2007.03438
    [81] Wang Wei, Gao Jinyao, Li Dongming, et al. 2018. Measurements and accuracy evaluation of a strapdown marine gravimeter based on inertial navigation. Sensors, 18(3092): 1–13. doi: 10.3390/s18113902
    [82] Watts A B, Fairhead J D. 1999. A process-oriented approach to modeling the gravity signature of continental margins. The Leading Edge, 18(2): 258–263. doi: 10.1190/1.1438270
    [83] White R S, McKenzie D, O’Nions R K. 1992. Oceanic crustal thickness from seismic measurements and rare earth element inversions. Journal of Geophysical Research: Solid Earth, 97(B13): 19683–19715. doi: 10.1029/92JB01749
    [84] Whitmarsh R B, Miles P R. 1995. Models of the development of the West Iberia rifted continental margin at 40°30'N deduced from surface and deep-tow magnetic anomalies. Journal of Geophysical Research: Solid Earth, 100(B3): 3789–3806. doi: 10.1029/94JB02877
    [85] Wiles E, Green A, Watkeys M, et al. 2014. Anomalous seafloor mounds in the northern Natal Valley, southwest Indian Ocean: Implications for the East African rift system. Tectonophysics, 630: 300–312. doi: 10.1016/j.tecto.2014.05.030
  • 加载中
图(7)
计量
  • 文章访问数:  1272
  • HTML全文浏览量:  512
  • PDF下载量:  107
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-17
  • 录用日期:  2020-11-05
  • 网络出版日期:  2021-05-24
  • 刊出日期:  2021-07-25

目录

    /

    返回文章
    返回