Roughness correction method for salinity remote sensing using combined active/passive observations

Wentao Ma Guihong Liu Yang Yu Yanlei Du

Wentao Ma, Guihong Liu, Yang Yu, Yanlei Du. Roughness correction method for salinity remote sensing using combined active/passive observations[J]. Acta Oceanologica Sinica. doi: 10.1007/s13131-021-1744-z
Citation: Wentao Ma, Guihong Liu, Yang Yu, Yanlei Du. Roughness correction method for salinity remote sensing using combined active/passive observations[J]. Acta Oceanologica Sinica. doi: 10.1007/s13131-021-1744-z

doi: 10.1007/s13131-021-1744-z

Roughness correction method for salinity remote sensing using combined active/passive observations

Funds: The National Key Research and Development Program of China under contract Nos 2018YFA0605403 and 2016YFB0500204; the Hainan Provincial Natural Science Foundation of China under contract No. 418QN301; the National Natural Science Foundation of China under contract No. 41801238
More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  Wind-induced emissivity versus NRCS and wind directions (beam-3, incidence angle of 46.29°, wind direction bins of 10°, and NRCS bins of 0.001).

    Figure  2.  V-pol ewNRCS of beam-3 calculated by HH-polarized NRCS, distributed with NRCS and wind direction.

    Figure  3.  RMSE between simulated and measured excess emissivity with different NRCSs and wind directions (beam-3, results multiplied by 290 K).

    Figure  4.  RMSE of wind-induced emissivity calculated by (a) NCEP wind speed, (b) HH wind speed, and (c) HHH wind speed at three incidence angles and two polarizations (RMSEs are calculated in a 0.5 m/s bin).

    Figure  5.  Comparison of simulated TB and the Aquarius TB observations from the ocean surface.

    Table  1.   Statistics of calculated brightness temperature (TB) compared with measured TB

    Beamand polarizationVVHHNCEP
    Bias/KRMSE/KBias/KRMSE/KBias/KRMSE/K
    Beam-1 V–6.81×10–33.31×10–11.77×10–32.77×10–1–4.25×10–23.34×10–1
    Beam–2 V–1.34×10–23.99×10–13.96×10–32.81×10–1–2.95×10–23.42×10–1
    Beam–3 V–9.60×10–33.73×10–16.59×10–32.59×10–1–3.96×10–23.16×10–1
    Beam–1 H–1.72×10–24.13×10–1–4.83×10–33.28×10–1–4.67×10–23.44×10–1
    Beam–2 H–9.90×10–35.61×10–11.53×10–23.57×10–1–2.61×10–33.75×10–1
    Beam–3 H–1.56×10–26.17×10–11.47×10–23.84×10–11.89×10–33.95×10–1
    下载: 导出CSV

    Table  2.   Statistics of calculated brightness temperature (TB) compared with measured TB of different methods

    Beam and polarizationHH+NCEP (MLE1)HH+NCEP+RAD (MLE2)V5 model-HHwindV5 model-HHHwind
    Bias/KRMSE/KBias/KRMSE/KBias/KRMSE/KBias/KRMSE/K
    Beam-1 V1.31×10–22.34×10–12.34×10–22.08×10–1–3.41×10–22.43×10–1–7.64×10–32.13×10–1
    Beam-2 V1.23×10–22.36×10–11.36×10–22.14×10–1–3.27×10–22.58×10–1–2.39×10–22.20×10–1
    Beam-3 V1.65×10–22.32×10–12.01×10–22.13×10–1–4.15×10–22.42×10–1–3.04×10–22.23×10–1
    Beam-1 H–2.28×10–22.37×10–1–2.85×10–22.11×10–1–4.31×10–22.63×10–1–3.45×10–22.02×10–1
    Beam-2 H–1.65×10–22.41×10–1–2.51×10–22.19×10–1–1.60×10–22.78×10–1–5.25×10–22.04×10–1
    Beam-3 H2.57×10–32.76×10–1–1.78×10–22.47×10–1–1.16×10–22.79×10–1–4.41×10–22.10×10–1
    下载: 导出CSV
  • [1] Camps A, Font J, Vall-Llossera M, et al. 2004. The WISE 2000 and 2001 field experiments in support of the SMOS mission: sea surface L-band brightness temperature observations and their application to sea surface salinity retrieval. IEEE Transactions on Geoscience and Remote Sensing, 42(4): 804–823. doi: 10.1109/TGRS.2003.819444
    [2] Dinnat E P, Boutin J, Caudal G, et al. 2003. On the use of EUROSTARRS and WISE data for validating L-band emissivity models. In: Proceedings of the First Results Workshop on Eurostarrs, Wise, Losac Campaigns. Noordwijk, Netherlands: ESA, 117–124
    [3] Du Yanlei, Yang Xiaofeng, Chen Kunshan, et al. 2017. An improved spectrum model for sea surface radar backscattering at L-Band. Remote Sensing, 9(8): 776. doi: 10.3390/rs9080776
    [4] Etcheto J, Dinnat E P, Boutin J, et al. 2004. Wind speed effect on L-band brightness temperature inferred from EuroSTARRS and WISE 2001 field experiments. IEEE Transactions on Geoscience and Remote Sensing, 42(10): 2206–2213. doi: 10.1109/TGRS.2004.834644
    [5] Fore A G, Yueh S H, Tang Wenqiang, et al. 2014. Aquarius wind speed products: algorithms and validation. IEEE Transactions on Geoscience and Remote Sensing, 52(5): 2920–2927. doi: 10.1109/TGRS.2013.2267616
    [6] Guimbard S, Gourrion J, Portabella M, et al. 2012. SMOS semi-empirical ocean forward model adjustment. IEEE Transactions on Geoscience and Remote Sensing, 50(5): 1676–1687. doi: 10.1109/TGRS.2012.2188410
    [7] Hollinger J P. 1971. Passive microwave measurements of sea surface roughness. IEEE Transactions on Geoscience Electronics, 9(3): 165–169. doi: 10.1109/TGE.1971.271489
    [8] Isoguchi O, Shimada M. 2009. An L-band ocean geophysical model function derived from PALSAR. IEEE Transactions on Geoscience and Remote Sensing, 47(7): 1925–1936. doi: 10.1109/TGRS.2008.2010864
    [9] Lagerloef G, Colomb F, Le Vine D, et al. 2008. The Aquarius/SAC-D mission: designed to meet the salinity remote-sensing challenge. Oceanography, 21(1): 68–81. doi: 10.5670/oceanog.2008.68
    [10] Ma Wentao, Yang Xiaofeng, Liu Guihong, et al. 2014. An improved model for L-band brightness temperature estimation over foam-covered seas under low and moderate winds. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(9): 3784–3793. doi: 10.1109/JSTARS.2014.2318432
    [11] Meissner T, Wentz F J. 2004. The complex dielectric constant of pure and sea water from microwave satellite observations. IEEE Transactions on Geoscience and Remote Sensing, 42(9): 1836–1849. doi: 10.1109/TGRS.2004.831888
    [12] Meissner T, Wentz F J. 2012b. The emissivity of the ocean surface between 6 and 90 GHz over a large range of wind speeds and earth incidence angles. IEEE Transactions on Geoscience and Remote Sensing, 50(8): 3004–3026. doi: 10.1109/TGRS.2011.2179662
    [13] Meissner T, Wentz F, Hilburn K, et al. 2012a. The aquarius salinity retrieval algorithm. In: Proceedings of 2012 IEEE International Geoscience and Remote Sensing Symposium. Munich, Germany: IEEE, 386–388
    [14] Meissner T, Wentz F J, Le Vine D M. 2018. The salinity retrieval algorithms for the NASA aquarius version 5 and SMAP version 3 releases. Remote Sensing, 10(7): 1121. doi: 10.3390/rs10071121
    [15] Meissner T, Wentz F J, Ricciardulli L. 2014. The emission and scattering of L-band microwave radiation from rough ocean surfaces and wind speed measurements from the Aquarius sensor. Journal of Geophysical Research: Oceans, 119(9): 6499–6522. doi: 10.1002/2014JC009837
    [16] Reul N, Grodsky S A, Arias M, et al. 2020. Sea surface salinity estimates from spaceborne L-band radiometers: an overview of the first decade of observation (2010–2019). Remote Sensing of Environment, 242: 111769. doi: 10.1016/j.rse.2020.111769
    [17] Yin Xiaobin, Boutin J, Dinnat E, et al. 2016. Roughness and foam signature on SMOS-MIRAS brightness temperatures: a semi-theoretical approach. Remote Sensing of Environment, 180: 221–233. doi: 10.1016/j.rse.2016.02.005
    [18] Yin Xiaobin, Boutin J, Martin N, et al. 2012. Optimization of L-band sea surface emissivity models deduced from SMOS data. IEEE Transactions on Geoscience and Remote Sensing, 50(5): 1414–1426. doi: 10.1109/TGRS.2012.2184547
    [19] Yueh S H, Dinardo S J, Fore A G, et al. 2010. Passive and active L-band microwave observations and modeling of ocean surface winds. IEEE Transactions on Geoscience and Remote Sensing, 48(8): 3087–3100. doi: 10.1109/TGRS.2010.2045002
    [20] Yueh S H, Tang Wenqing, Fore A G, et al. 2013. L-band passive and active microwave geophysical model functions of ocean surface winds and applications to Aquarius retrieval. IEEE Transactions on Geoscience and Remote Sensing, 51(9): 4619–4632. doi: 10.1109/TGRS.2013.2266915
    [21] Yueh S H, West R, Wilson W J, et al. 2001. Error sources and feasibility for microwave remote sensing of ocean surface salinity. IEEE Transactions on Geoscience and Remote Sensing, 39(5): 1049–1060. doi: 10.1109/36.921423
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  101
  • HTML全文浏览量:  54
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-14
  • 录用日期:  2020-12-25
  • 网络出版日期:  2021-04-22

目录

    /

    返回文章
    返回