Influences of the Great Whirl on surface chlorophyll-a off the Somali Coast in 2017

Lingxing Dai Bing Han Shilin Tang Chuqun Chen Yan Du

Lingxing Dai, Bing Han, Shilin Tang, Chuqun Chen, Yan Du. Influences of the Great Whirl on surface chlorophyll-a off the Somali Coast in 2017[J]. Acta Oceanologica Sinica. doi: 10.1007/s13131-021-1740-3
Citation: Lingxing Dai, Bing Han, Shilin Tang, Chuqun Chen, Yan Du. Influences of the Great Whirl on surface chlorophyll-a off the Somali Coast in 2017[J]. Acta Oceanologica Sinica. doi: 10.1007/s13131-021-1740-3

doi: 10.1007/s13131-021-1740-3

Influences of the Great Whirl on surface chlorophyll-a off the Somali Coast in 2017

Funds: The National Natural Science Foundation of China under contract 41830538 and 41525019; the Chinese Academy of Sciences Fund under contract XDA15020901, 133244KYSB20190031, and ZDRW-XH-2019-2; Guangdong Basic and Applied Basic Research Fund under contract 2020A1515010498; the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) Fund under contract GML2019ZD0303 and 2019BT02H594.
More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  Comparison of surface patterns between the sea surface height (SSH) from satellite observations (black solid contours for SSH anomaly (SSHa) > 0 and black dash contours for SSHa < 0) and the SSH from model products (colors) at different time.

    Figure  2.  Location of Great Whirl centers (colored dots) in June-November 2017 and the surface currents (vectors) on August 20, 2017. The red, brown, and blue enclosed lines represent the area of GW in June, August, and November respectively.

    Figure  3.  Time evolution of the radius (a), amplitude (b) and speed (c) of GW in 2017. The grey lines represent the original results, and the red lines represent the results that are smoothed using a 7-point moving average filter.

    Figure  4.  Vertical section of north-south velocity across the center of Great Whirl at different time from model products. The white lines represent the mixed layer depth (MLD).

    Figure  5.  Chl-a distribution around the Great Whirl in 2017. The SSH anomaly is from satellite observations (black solid contours for SSHa>0 and black dash contours for SSHa<0). The colors represent Chl-a concentration. The vectors represent CCMP surface winds.

    Figure  6.  Composite averages of Chl-a anomaly for every month in the life cycle of Great Whirl. Panels a to f correspond to June to November respectively.

    Figure  7.  Time evolution of the Chl-a (a), MLD (b) and WEP (c) of Great Whirl in 2017. All the three parameters in GW is defined as the mean value within 0.5R. The grey lines represent the original results, and the red lines represent the results that are smoothed using a 7-point moving average filter.

    Figure  8.  Time evolution of differences between Chl-a in the interior and periphery of Great Whirl. The parameter in the interior of Great Whirl is similar to that in Figure 7. Accordingly, the parameter at the periphery is defined as the mean value of Chl-a between 1R and 2R. The grey lines represent the original results, and the red lines represent the results that are smoothed using a 7-point moving average filter.

    Figure  9.  Schematic diagram of GW and the underlying mechanisms of the Chl-a bloom in July (a) and October (b). R and A are the radius and SSH amplitude of GW respectively. The spatial distribution of Chl-a was monthly averaged. The MLD and the vertical velocity of eddy-induced Ekman pumping were calculated by monthly averaged in 0.5R of GW.

  • [1] Atlas R, Hoffman R N, Ardizzone J, et al. 2011. A Cross-Calibrated, Multiplatform ocean surface wind velocity product for meteorological and oceanographic applications. Bulletin of the American Meteorological Society, 92(2): 157–174. doi: 10.1175/2010BAMS2946.1
    [2] Beal L M, Donohue K A. 2013. The Great Whirl: Observations of its seasonal development and interannual variability. Journal of Geophysical Research: Oceans, 118(1): 1–13. doi: 10.1029/2012JC008198
    [3] Brock J C, McClain C R, Luther M E, et al. 1991. The phytoplankton bloom in the northwestern Arabian Sea during the southwest monsoon of 1979. Journal of Geophysical Research: Oceans, 96(C1): 20623–20642
    [4] Chelton D B, Schlax M G, Samelson R M. 2011. Global observations of nonlinear mesoscale eddies. Progress in Oceanography, 91(2): 167–216. doi: 10.1016/j.pocean.2011.01.002
    [5] D’Ovidio F, De Monte S, Penna A D, et al. 2013. Ecological implications of eddy retention in the open ocean: a Lagrangian approach. Journal of Physics A Mathematical and Theoretical, 46(25): 254023. doi: 10.1088/1751-8113/46/25/254023
    [6] Falkowski P G, Ziemann D, Kolber Z, et al. 1991. Role of eddy pumping in enhancing primary production in the ocean. Nature, 352(6330): 55–58. doi: 10.1038/352055a0
    [7] Fischer J, Schott F A, Stramma L. 1996. Currents and transports of the Great Whirl-Socotra Gyre system during the summer monsoon, August 1993. Journal of Geophysical Research: Oceans, 101(C2): 3573–3587. doi: 10.1029/95JC03617
    [8] Garçon V C, Oschlies A, Doney S C, et al. 2001. The role of mesoscale variability on plankton dynamics in the North Atlantic. Deep- Sea Research Part II:Topical Studies in Oceanography, 48(10): 2199–2226. doi: 10.1016/S0967-0645(00)00183-1
    [9] Gaube P, Mcgillicuddy D J Jr, Chelton D B, et al. 2014. Regional variations in the influence of mesoscale eddies on near‐surface chlorophyll. Journal of Geophysical Research: Oceans, 119(12): 8195–8220. doi: 10.1002/2014JC010111
    [10] Halpern D. 2002. Offshore Ekman transport and Ekman pumping off Peru during the 1997–1998 El Niño. Geophysical Research Letters, 29(5): 1075
    [11] Jensen T G. 1991. Modeling the seasonal undercurrents in the Somali Current system. Journal of Geophysical Research: Oceans, 96(C12): 22151–22167. doi: 10.1029/91JC02383
    [12] Kara B A, Rochford P A, Hurlburt H E. 2003. Mixed layer depth variability over the global ocean. Journal of Geophysical Research: Oceans, 108(C3): 3079. doi: 10.1029/2000JC000736
    [13] Kawamiya M. 2001. Mechanism of offshore nutrient supply in the western Arabian Sea. Journal of Marine Research, 59(5): 675–696. doi: 10.1357/002224001762674890
    [14] Lévy M, Shankar D, André J M, et al. 2007. Basin-wide seasonal evolution of the Indian Ocean’s phytoplankton blooms. Journal of Geophysical Research: Oceans, 112(C12): C12014. doi: 10.1029/2007JC004090
    [15] Lee C M, Jones B H, Brink K H, et al. 2000. The upper-ocean response to monsoonal forcing in the Arabian Sea: seasonal and spatial variability. Deep Sea Research Part II: Topical Studies in Oceanography, 47(7–8): 1177–1226
    [16] Letelier R M, Karl D M, Abbott M R, et al. 2000. Role of late winter mesoscale events in the biogeochemical variability of the upper water column of the North Pacific Subtropical Gyre. Journal of Geophysical Research: Oceans, 105(C12): 28723–28739. doi: 10.1029/1999JC000306
    [17] Liao Xiaomei, Du Yan, Zhan Haigang, et al. 2014. Summertime phytoplankton blooms and surface cooling in the western south equatorial Indian Ocean. Journal of Geophysical Research: Oceans, 119(11): 7687–7704. doi: 10.1002/2014JC010195
    [18] Liao Xiaomei, Zhan Haigang, Du Yan. 2016. Potential new production in two upwelling regions of the western Arabian Sea: Estimation and comparison. Journal of Geophysical Research: Oceans, 121(7): 4487–4502. doi: 10.1002/2016JC011707
    [19] Madec G. 2008. NEMO Ocean Engine. France: Institut Pierre-Simon Laplace (IPSL), 1288–1619 (查阅所有网上资料, 未找到出版城市, 请联系作者确认)
    [20] Madec G, Imbard M. 1996. A global ocean mesh to overcome the North Pole singularity. Climate Dynamics, 12(6): 381–388. doi: 10.1007/BF00211684
    [21] Mahadevan A. 2014. Ocean Science: eddy effects on biogeochemistry. Nature, 506(7487): 168–169. doi: 10.1038/nature13048
    [22] McCreary J P, Kundu P K. 1988. A numerical investigation of the somali current during the southwest monsoon. Journal of Marine Research, 46(1): 25–58. doi: 10.1357/002224088785113711
    [23] McCreary J P, Murtugudde R, Vialard J, et al. 2009. Biophysical processes in the indian ocean. In: Wiggert J D, ed. Indian Ocean Biogeochemical Processes and Ecological Variability. Washington, D.C.: American Geophysical Union
    [24] McGillicuddy D J Jr. 2016. Mechanisms of physical-biological-biogeochemical interaction at the oceanic mesoscale. Annual Review of Marine Science, 8: 125–159. doi: 10.1146/annurev-marine-010814-015606
    [25] McGillicuddy D J Jr, Anderson L A, Doney S C, et al. 2003. Eddy-driven sources and sinks of nutrients in the upper ocean: results from a 0.1 resolution model of the North Atlantic. Global Biogeochemical Cycles, 17(2): 1035
    [26] McGillicuddy D J Jr, Robinson A R, Siegel D A, et al. 1998. Influence of mesoscale eddies on new production in the Sargasso Sea. Nature, 394(6690): 263–266. doi: 10.1038/28367
    [27] Melzer B A, Jensen T G, Rydbeck A V. 2019. Evolution of the great whirl using an Altimetry-Based eddy tracking algorithm. Geophysical Research Letters, 46(8): 4378–4385. doi: 10.1029/2018GL081781
    [28] Oschlies A, Garçon V. 1998. Eddy-induced enhancement of primary production in a model of the North Atlantic Ocean. Nature, 394(6690): 266–269. doi: 10.1038/28373
    [29] Pujol M I, Faugère Y, Taburet G, et al. 2016. DUACS DT2014: the new multi-mission altimeter data set reprocessed over 20 years. Ocean Science, 12(5): 1067–1090. doi: 10.5194/os-12-1067-2016
    [30] Renault L, Dewitte B, Marchesiello P, et al. 2012. Upwelling response to atmospheric coastal jets off central Chile: A modeling study of the October 2000 event. Journal of Geophysical Research: Oceans, 117(C2): C02030
    [31] Risien C M, Chelton D B. 2008. A global climatology of surface wind and wind stress fields from eight years of QuikSCAT scatterometer data. Journal of Physical Oceanography, 38(11): 2379–2413. doi: 10.1175/2008JPO3881.1
    [32] Schott F A, Jürgen F, Garternicht U, et al. 1997. Summer monsoon response of the Northern Somali Current, 1995. Geophysical Research Letters, 24(21): 2565–2568. doi: 10.1029/97GL00888
    [33] Schott F A, McCreary J P Jr. 2001. The monsoon circulation of the Indian Ocean. Progress in Oceanography, 51(1): 1–123. doi: 10.1016/S0079-6611(01)00083-0
    [34] Siegel D A, McGillicuddy D J Jr, Fields E A. 1999. Mesoscale eddies, satellite altimetry, and new production in the Sargasso Sea. Journal of Geophysical Research: Oceans, 104(C6): 13359–13379. doi: 10.1029/1999JC900051
    [35] Siegel D A, Peterson P, McGillicuddy D J Jr, et al. 2011. Bio-optical footprints created by mesoscale eddies in the Sargasso Sea. Geophysical Research Letters, 38(13): L13608
    [36] Schott F A, Xie Shangping, McCreary J P Jr. 2009. Indian Ocean circulation and climate variability. Reviews of Geophysics, 47(1): RG1002
    [37] Wiggert J D, Hood R R, Banse K, et al. 2005. Monsoon-driven biogeochemical processes in the Arabian Sea. Progress in Oceanography, 65(2–4): 176–213
    [38] Wirth A, Willebrand J, Schott F A. 2002. Variability of the Great Whirl from observations and models. Deep Sea Research Part II: Topical Studies in Oceanography, 49(7–8): 1279–1295
    [39] Young D K, Kindle J C. 1994. Physical processes affecting availability of dissolved silicate for diatom production in the Arabian Sea. Journal of Geophysical Research: Oceans, 99(C11): 22619–22632. doi: 10.1029/94JC01449
  • 加载中
计量
  • 文章访问数:  67
  • HTML全文浏览量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-03
  • 录用日期:  2020-09-25
  • 网络出版日期:  2021-06-24

目录

    /

    返回文章
    返回