The behavioral and antioxidant response of the bivalve Gomphina veneriformis to sediment burial effect

Xiaojing Li Linlin Chen Zhengquan Zhou Baoquan Li Xin Liu

Xiaojing Li, Linlin Chen, Zhengquan Zhou, Baoquan Li, Xin Liu. The behavioral and antioxidant response of the bivalve Gomphina veneriformis to sediment burial effect[J]. Acta Oceanologica Sinica, 2021, 40(6): 75-82. doi: 10.1007/s13131-020-1690-1
Citation: Xiaojing Li, Linlin Chen, Zhengquan Zhou, Baoquan Li, Xin Liu. The behavioral and antioxidant response of the bivalve Gomphina veneriformis to sediment burial effect[J]. Acta Oceanologica Sinica, 2021, 40(6): 75-82. doi: 10.1007/s13131-020-1690-1

doi: 10.1007/s13131-020-1690-1

The behavioral and antioxidant response of the bivalve Gomphina veneriformis to sediment burial effect

Funds: The Key Research Project of Frontier Science of Chinese Academy of Sciences under contract No. QYZDB-SSW-DQC041; the Program of Ministry of Science and Technology of China under contract No. 2015FY210300; the Strategic Priority Research Program of the Chinese Academy of Sciences under contract Nos XDA23050304 and XDA23050202; the Open Research Fund of the Laboratory of Marine Ecosystem and Biogeochemistry of State Oceanic Administration under contact No. LMEB201716; the Fund of the China Scholarship Council.
More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  The schematic diagram of experimental design.

    Figure  2.  Environmental parameters of pore water from the surface, middle and bottom sediment layers during the experiment.

    Figure  3.  The superoxide dismutase (SOD) activities in gills and hepatopancreases of G. veneriformis in each experimental group. Error bars indicate standard deviation (n>5). The bars marked with different letters indicates there are significant differences among experimental groups, same letters no difference. Lower-case letters indicate difference analysis of SOD activities among groups in gills and capital letters in hepatopancreases. Asterisks indicated different SOD activities between gills and hepatopancreas in the same group. *p<0.05; **p<0.01.

    Figure  4.  The catalase (CAT) activities in gills and hepatopancreases of G. veneriformis in each experimental group. Error bars indicate the standard deviation (n>3). The bars marked with different letters indicates there are significant differences among experimental groups, same letters no difference. Lower-case letters indicate difference analysis of CAT activities among groups in gills and capital letters in hepatopancreases. Asterisks indicated different CAT activities between gills and hepatopancreas in the same group. *p<0.05; **p<0.01.

    Table  1.   The average length and width of clam individuals distributed at different layers in 30 cm burial groups

    LayerS30MS30M30
    Length/cmWidth/cmLength/cmWidth/cmLength/cmWidth/cm
    25–30 cm26.3519.1226.3119.36
    20–25 cm29.3320.0425.8218.80
    15–20 cm27.3920.4527.7320.28
    10–15 cm24.4417.5627.0219.8725.7418.66
    5–10 cm26.5919.3125.6618.9630.6422.81
    0–5 cm28.1620.9528.4220.8925.6418.78
    –5 cm to 0 cm 26.9519.8924.8118.1525.1018.51
    Note: – means no data.
    下载: 导出CSV

    Table  2.   The average number (n=3) of individuals distributed at different layers when buried for 8 d

    LayerExperimental group
    CS5MS5M5S15MS15M15S30MS30M30
    25–30 cm2.001.33
    20–25 cm0.671.00
    15–20 cm1.671.00
    10–15 cm3.005.335.670.331.331.00
    5–10 cm0.671.331.672.000.671.67
    0–5 cm4.334.002.002.330.672.002.333.332.67
    –5–0 cm 10.005.676.008.004.002.670.674.331.001.33
    Note: – means no data.
    下载: 导出CSV
  • [1] Basha P S, Rani A U. 2003. Cadmium-induced antioxidant defense mechanism in freshwater teleost Oreochromis mossambicus (Tilapia). Ecotoxicology and Environmental Safety, 56(2): 218–221. doi: 10.1016/S0147-6513(03)00028-9
    [2] Bellchambers L, Richardson A. 1995. The effect of substrate disturbance and burial depth on the venerid clam, Katelysia scalarina (Lamarck, 1818). Journal of Shellfish Research, 14(1): 41–44
    [3] Bijkerk R. 1988. Ontsnappen of begraven blijven: de effecten op bodemdieren van een verhoogde sedimentatie als gevolg van baggerwerkzaamheden: literatuuronderzoek. Groningen: RDD Aquatic Ecosystems, 1–72
    [4] Bolam S G. 2011. Burial survival of benthic macrofauna following deposition of simulated dredged material. Environmental Monitoring and Assessment, 181(1–4): 13–27
    [5] Bradford M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72: 248–254
    [6] Chandrasekara W U, Frid C L J. 1998. A laboratory assessment of the survival and vertical movement of two epibenthic gastropod species, Hydrobia ulvae (Pennant) and Littorina littorea (Linnaeus), after burial in sediment. Journal of Experimental Marine Biology and Ecology, 221(2): 191–207. doi: 10.1016/S0022-0981(97)00123-8
    [7] Chen Rong, Zheng Weiyun, Yu Qun, et al. 2002. Effect of oil pollution on antioxidant enzyme of oyster (Ostrea cucullata). Acta Scientiae Circumstantiae (in Chinese), 22(3): 385–388
    [8] Cong Ming, Wu Huifeng, Liu Xiaoli, et al. 2012. Effects of heavy metals on the expression of a zinc-inducible metallothionein-III gene and antioxidant enzyme activities in Crassostrea gigas. Ecotoxicology, 21(7): 1928–1936. doi: 10.1007/s10646-012-0926-z
    [9] Conroy E, Turner J N, Rymszewicz A, et al. 2017. Further insights into the responses of macroinvertebrate species to burial by sediment. Hydrobiologia, 805(1): 399–411
    [10] Greco L, Pellerin J, Capri E, et al. 2011. Physiological effects of temperature and a herbicide mixture on the soft-shell clam Mya arenaria (Mollusca, Bivalvia). Environmental Toxicology and Chemistry, 30(1): 132–141. doi: 10.1002/etc.359
    [11] Jackson M J, James R. 1979. The influence of bait digging on cockle, Cerastoderma edule, populations in North Norfolk. Journal of Applied Ecology, 16(3): 671–679. doi: 10.2307/2402844
    [12] Ji Xiao. 2014. Burial effects of dredged material on Ruditapes philippinarum and Perinereis aibuhitensis (in Chinese) [dissertation]. Shanghai: Shanghai Ocean University
    [13] Kranz P M. 1974. The anastrophic burial of bivalves and its paleoecological significance. The Journal of Geology, 82(2): 237–265. doi: 10.1086/627961
    [14] Maurer D, Keck R T, Tinsman J C, et al. 1981a. Vertical migration and mortality of benthos in dredged material: Part I. Mollusca. Marine Environmental Research, 4(4): 299–319. doi: 10.1016/0141-1136(81)90043-X
    [15] Maurer D, Keck R T, Tinsman J C, et al. 1981b. Vertical migration and mortality of benthos in dredged material: Part II. Crustacea. Marine Environmental Research, 5(4): 301–317. doi: 10.1016/0141-1136(81)90014-3
    [16] Maurer D, Keck R T, Tinsman J C, et al. 1982. Vertical migration and mortality of benthos in dredged material: Part III. Polychaeta. Marine Environmental Research, 6(1): 49–68. doi: 10.1016/0141-1136(82)90007-1
    [17] Maurer D, Keck R T, Tinsman J C, et al. 1986. Vertical migration and mortality of marine benthos in dredged material: a synthesis. Internationale Revue der gesamten Hydrobiologie und Hydrographie, 71(1): 49–63. doi: 10.1002/iroh.19860710106
    [18] Naser H A. 2011. Effects of reclamation on macrobenthic assemblages in the coastline of the Arabian Gulf: a microcosm experimental approach. Marine Pollution Bulletin, 62(3): 520–524. doi: 10.1016/j.marpolbul.2010.11.032
    [19] Nunes B, Nunes J, Soares A M V M, et al. 2017. Toxicological effects of paracetamol on the clam Ruditapes philippinarum: exposure vs recovery. Aquatic Toxicology, 192: 198–206. doi: 10.1016/j.aquatox.2017.09.015
    [20] Park K, Kim R, Park J J, et al. 2012. Ecotoxicological evaluation of tributyltin toxicity to the equilateral venus clam, Gomphina veneriformis (Bivalvia: Veneridae). Fish and Shellfish Immunology, 32(3): 426–433. doi: 10.1016/j.fsi.2011.11.031
    [21] Powilleit M, Graf G, Kleine J, et al. 2009. Experiments on the survival of six brackish macro-invertebrates from the Baltic Sea after dredged spoil coverage and its implications for the field. Journal of Marine Systems, 75(3–4): 441–451
    [22] Ross S W, Dalton D A, Kramer S, et al. 2001. Physiological (antioxidant) responses of estuarine fishes to variability in dissolved oxygen. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 130(3): 289–303
    [23] Séguin A, Harvey É, Archambault P, et al. 2014. Body size as a predictor of species loss effect on ecosystem functioning. Scientific Reports, 4: 4616
    [24] Stanley S M. 1970. Relation of Shell Form to Life Habits of the Bivalvia (Mollusca). Boulder, Colorado: Geological Society of America, 45–85
    [25] Stebbing A R D. 1982. Hormesis—the stimulation of growth by low levels of inhibitors. Science of the Total Environment, 22(3): 213–234. doi: 10.1016/0048-9697(82)90066-3
    [26] Suzuki J, Imamura M, Nakano D, et al. 2018. Effects of water turbidity and different temperatures on oxidative stress in caddisfly (Stenopsyche marmorata) larvae. Science of the Total Environment, 630: 1078–1085. doi: 10.1016/j.scitotenv.2018.02.286
    [27] Trueman E R. 1983. Locomotion in molluscs. In: Saleuddin A S M, Wilbur K M, eds. The Mollusca. New York: Academic Press, 155–198
    [28] Woo S, Denis V, Won H, et al. 2013. Expressions of oxidative stress-related genes and antioxidant enzyme activities in Mytilus galloprovincialis (Bivalvia, Mollusca) exposed to hypoxia. Zoological Studies, 52(1): 15. doi: 10.1186/1810-522X-52-15
    [29] Woodward G, Ebenman B, Emmerson M, et al. 2005. Body size in ecological networks. Trends in Ecology & Evolution, 20(7): 402–409
    [30] Wu Huifeng, Liu Xiaoli, Zhao Jianmin, et al. 2012. Regulation of metabolites, gene expression, and antioxidant enzymes to environmentally relevant lead and zinc in the halophyte Suaeda salsa. Journal of Plant Growth Regulation, 32(2): 353–361
    [31] Yanez B, Carballo J L, Olabrarria C, et al. 2008. Recovery of macrobenthic assemblages following experimental sand burial. Oceanologia, 50(3): 391–420
    [32] Yang Guojun, Song Lun, Lu Xiaoqian, et al. 2017. Effect of the exposure to suspended solids on the enzymatic activity in the bivalve Sinonovacula constricta. Aquaculture and Fisheries, 2(1): 10–17. doi: 10.1016/j.aaf.2017.01.001
    [33] You Zhongjie, Wang Yinong, Yan Zhengrong, et al. 1992. A study on the living habits of the sand clam Gomphina veneriformis (Lamarck). Donghai Marine Science (in Chinese), 10(3): 70–76
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  621
  • HTML全文浏览量:  215
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-15
  • 录用日期:  2020-03-15
  • 网络出版日期:  2021-04-01
  • 刊出日期:  2021-06-01

目录

    /

    返回文章
    返回