Turn off MathJax
Article Contents
Davood Shariatmadari, Seyed Mostafa Siadatmousavi, Cyrus Ershadi. Numerical study of power production from tidal energy in the Khuran Channel and its feedback on background hydrodynamics[J]. Acta Oceanologica Sinica. doi: org/10.1007/s13131-021-1968-y
Citation: Davood Shariatmadari, Seyed Mostafa Siadatmousavi, Cyrus Ershadi. Numerical study of power production from tidal energy in the Khuran Channel and its feedback on background hydrodynamics[J]. Acta Oceanologica Sinica. doi: org/10.1007/s13131-021-1968-y

Numerical study of power production from tidal energy in the Khuran Channel and its feedback on background hydrodynamics

doi: org/10.1007/s13131-021-1968-y
More Information
  • Corresponding author: E-mail: cyrusershadi1@yahoo.co.uk
  • Received Date: 2021-04-30
  • Accepted Date: 2021-09-30
  • Available Online: 2022-04-13
  • This study focuses on the development of a farm of tidal turbines in the Khuran Channel. The important factors include the location of turbines and their hydrodynamic effects on the environment. A three-dimensional circulation model for the Persian Gulf is employed for the comprehensive evaluation of the tidal energy potential throughout the study area. The model is validated by using in situ observations of water level and current data. The appropriate potential points for extracting the tidal energy were identified in the Persian Gulf using the model results. The Khuran Channel, located in the north of Qeshm Island, was found to be the best place to extract tidal energy inside the Persian Gulf. By adding the term of momentum losses to the governing equations, the feedback of extracting energy on the hydrodynamic around Qeshm Island was studied. The simulation results show that the average daily power production of a tidal farm with 99 turbines for one month is approximately 1.3 MW. This tidal farm also has a significant impact on the water level inside the Khuran Channel, especially near the tidal farm where these fluctuations exceed 4 cm. The change in the current speed caused by wake reaches 0.4 m/s. Wake effects were active up to 7 km downstream of the turbines. The current velocity was also estimated to be 1.6 m/s and 2.1 m/s during the spring and ebb tides within the channel, respectively.
  • loading
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (15) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return