Turn off MathJax
Article Contents
Ke Qu, Binbin Zou, Jianbo Zhou. Rapid environmental assessment in the South China Sea: Improved inversion of sound speed profile using remote sensing data[J]. Acta Oceanologica Sinica. doi: 10.1007/s13131-022-2032-2
Citation: Ke Qu, Binbin Zou, Jianbo Zhou. Rapid environmental assessment in the South China Sea: Improved inversion of sound speed profile using remote sensing data[J]. Acta Oceanologica Sinica. doi: 10.1007/s13131-022-2032-2

Rapid environmental assessment in the South China Sea: Improved inversion of sound speed profile using remote sensing data

doi: 10.1007/s13131-022-2032-2
Funds:  The Natural Science Foundation of Guangdong Province under contract No. 2022A1515011519; the National Natural Science Foundation of China under contract No. 11904290.
More Information
  • Corresponding author: E-mail: zoubb@mail.ioa.ac.cn
  • Received Date: 2021-06-12
  • Accepted Date: 2022-04-21
  • Available Online: 2022-05-13
  • Complex perturbations in the profile and the sparsity of samples often limit the validity of rapid environmental assessment (REA) in the South China Sea (SCS). In this paper, the remote sensing data were used to estimated sound speed profile (SSP) with the self-organizing map (SOM) method in the SCS. First, the consistency of the empirical orthogonal functions was examined by using k-means clustering. The clustering results indicated that SSPs in the SCS have a similar perturbation nature, which means the inverted grid could be expanded to the entire SCS to deal with the problem of sparsity of the samples without statistical improbability. Second, a machine learning method was proposed that took advantage of the topological structure of SOM to significantly improve their accuracy. Validation revealed promising results, with a mean reconstruction error of 1.26 m/s, which is 1.16 m/s smaller than the traditional single empirical orthogonal function regression (sEOF-r) method. By violating the constraints of linear inversion, the topological structure of the SOM method showed a smaller error and better robustness in the SSP estimation. The improvements to enhance the accuracy and robustness of REA in the SCS were offered. These results suggested a potential utilization of REA in the SCS based on satellite data and provided a new approach for SSP estimation derived from sea surface data.
  • loading
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (27) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return