Turn off MathJax
Article Contents
Mengxue Qu, Zexun Wei, Yanfeng Wang, Yonggang Wang, Tengfei Xu. Objective array design for three-dimensional temperature and salinity observation: Application to the South China Sea[J]. Acta Oceanologica Sinica. doi: 10.1007/s13131-021-1975-z
Citation: Mengxue Qu, Zexun Wei, Yanfeng Wang, Yonggang Wang, Tengfei Xu. Objective array design for three-dimensional temperature and salinity observation: Application to the South China Sea[J]. Acta Oceanologica Sinica. doi: 10.1007/s13131-021-1975-z

Objective array design for three-dimensional temperature and salinity observation: Application to the South China Sea

doi: 10.1007/s13131-021-1975-z
Funds:  The National Key Research and Development Program of China under contract No. 2019YFC1408400; the National Natural Science Foundation of China under contract No. 41876029.
More Information
  • Corresponding author: E-mail: xutengfei@fio.org.cn
  • Received Date: 2021-05-31
  • Accepted Date: 2021-09-03
  • Available Online: 2022-05-10
  • In this study, a moored array optimization tool (MAOT) was developed and applied to the South China Sea (SCS) with a focus on three-dimensional temperature and salinity observations. Application of the MAOT involves two steps: (1) deriving a set of optimal arrays that are independent of each other for different variables at different depths based on an empirical orthogonal function method, and (2) consolidating these arrays using a K-center clustering algorithm. Compared with the assumed initial array consisting of 17 mooring sites located on a 3°×3° horizontal grid, the consolidated array improved the observing ability for three-dimensional temperature and salinity in the SCS with optimization efficiencies of 19.03% and 21.38%, respectively. Experiments with an increased number of moored sites showed that the most cost-effective option is a total of 20 moorings, improving the observing ability with optimization efficiencies up to 26.54% for temperature and 27.25% for salinity. The design of an objective array relies on the ocean phenomenon of interest and its spatial and temporal scales. In this study, we focus on basin-scale variations in temperature and salinity in the SCS, and thus our consolidated array may not well resolve mesoscale processes. The MAOT can be extended to include other variables and multi-scale variability and can be applied to other regions.
  • loading
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (14) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return