Turn off MathJax
Article Contents
Yaohua Zhu, Dingqi Wang, Yonggang Wang, Shujiang Li, Tengfei Xu, Zexun Wei. Vertical velocity and transport in the South China Sea[J]. Acta Oceanologica Sinica. doi: 10.1007/s13131-021-1954-4
Citation: Yaohua Zhu, Dingqi Wang, Yonggang Wang, Shujiang Li, Tengfei Xu, Zexun Wei. Vertical velocity and transport in the South China Sea[J]. Acta Oceanologica Sinica. doi: 10.1007/s13131-021-1954-4

Vertical velocity and transport in the South China Sea

doi: 10.1007/s13131-021-1954-4
Funds:  The National Key Research and Development Program of China under contract No. 2019YFC1408400; the National Natural Science Foundation of China under contract Nos 41876029, 41821004 and 41776042.
More Information
  • Corresponding author: E-mail: weizx@fio.org.cn
  • Received Date: 2021-08-04
  • Accepted Date: 2021-10-12
  • Available Online: 2021-11-09
  • Deep water in the South China Sea is renewed by the cold and dense Luzon Strait overflow. However, from where and how the deep water upwells is poorly understood yet. Based on the Hybrid Coordinate Ocean Model reanalysis data, vertical velocity is derived to answer these questions. Domain-integrated vertical velocity is of two maxima, one in the shallow water and the other at depth, and separated by a layer of minimum at the bottom of the thermocline. Further analysis shows that this two-segmented vertical transport is attributed to the vertical compensation of subsurface water to the excessive outflow of shallow water and upward push of the dense Luzon Strait overflow, respectively. In the abyssal basin, the vertical transport increases upward from zero at the depth of 3 500–4 000 m and reaches a maximum of 1.5×106 m3/s at about 1 500 m. Deep water upwells mainly from the northeastern and southwestern ends of the abyssal basin and off the continental slopes. To explain the upward velocity arising from slope breaks, a possible mechanism is proposed that an onshore velocity component can be derived from the deep western boundary current above steep slopes under bottom friction.
  • loading
  • [1]
    Cai Zhongya, Gan Jianping. 2020. Dynamics of the cross-layer exchange for the layered circulation in the South China Sea. Journal of Geophysical Research: Oceans, 125(8): e2020JC016131. doi: 10.1029/2020JC016131
    [2]
    Chai Fei, Xue Huijie, Shi Maochong. 2001. Formation and distribution of upwelling and downwelling in the South China Sea. China Oceanography Symposium, 13: 117–128
    [3]
    Chao S Y, Shaw P T, Wu S Y. 1996. Deep water ventilation in the South China Sea. Deep-Sea Research Part I: Oceanographic Research Papers, 43(4): 445–466. doi: 10.1016/0967-0637(96)00025-8
    [4]
    Chi P C, Chen Yuchun, Lu Shihua. 1998. Wind-driven South China Sea deep basin warm-core/cool-core eddies. Journal of Oceanography, 54(4): 347–360. doi: 10.1007/BF02742619
    [5]
    Fang Guohong, Wang Gang, Fang Yue, et al. 2012. A review on the South China Sea western boundary current. Acta Oceanologica Sinica, 31(5): 1–10. doi: 10.1007/s13131-012-0231-y
    [6]
    Gan Jianping, Allen J S. 2002. A modeling study of shelf circulation off northern California in the region of the Coastal Ocean Dynamics Experiment 2. Response to relaxation of upwelling winds. Journal of Geophysical Research: Oceans, 107(C11): 3184. doi: 10.1029/2001JC001190
    [7]
    Gan Jianping, Ho H S, Liang Linlin. 2013. Dynamics of intensified downwelling circulation over a widened shelf in the Northeastern South China Sea. Journal of Physical Oceanography, 43(1): 80–94. doi: 10.1175/JPO-D-12-02.1
    [8]
    Gan Jianping, Li H, Curchitser E N, et al. 2006. Modeling South China Sea circulation: Response to seasonal forcing regimes. Journal of Geophysical Research: Oceans, 111(C6): C06034. doi: 10.1029/2005JC003298
    [9]
    Gan Jianping, Liu Zhiqiang, Hui C R. 2016. A three-layer alternating spinning circulation in the South China Sea. Journal of Physical Oceanography, 46(8): 2309–2315. doi: 10.1175/JPO-D-16-0044.1
    [10]
    Gordon A L, Sprintall J, Van Aken H M, et al. 2010. The Indonesian throughflow during 2004–2006 as observed by the INSTANT program. Dynamics of Atmospheres and Oceans, 50(2): 115–128. doi: 10.1016/j.dynatmoce.2009.12.002
    [11]
    Jing Zhiyou, Qi Yiquan, Du Yan, et al. 2015. Summer upwelling and thermal fronts in the northwestern South China Sea: Observational analysis of two mesoscale mapping surveys. Journal of Geophysical Research: Oceans, 120(3): 1993–2006. doi: 10.1002/.2014JC010601
    [12]
    Li Li, Qu Tangdong. 2006. Thermohaline circulation in the deep South China Sea basin inferred from oxygen distributions. Journal of Geophysical Research: Oceans, 111(C5): C05017. doi: 10.1029/2005JC003164
    [13]
    Nitani H. 1972. Beginning of the Kuroshio. In: Stommel H, Yashida K, eds. Kuroshio: Physical Aspects of the Japan Current. Seattle, WA, USA: University of Washington Press, 129–163
    [14]
    Qu Tangdong. 2000. Upper-layer circulation in the South China Sea. Journal of Physical Oceanography, 30(6): 1450–1460. doi: 10.1175/1520-0485(2000)030<1450:ULCITS>2.0.CO;2
    [15]
    Qu Tangdong, Du Yan, Gan Jianping, et al. 2007. Mean seasonal cycle of isothermal depth in the South China Sea. Journal of Geophysical Research: Oceans, 112(C2): C02020. doi: 10.1029/2006JC003583
    [16]
    Qu Tangdong, Girton J B, Whitehead J A. 2006. Deepwater overflow through Luzon Strait. Journal of Geophysical Research: Oceans, 111(C1): C01002. doi: 10.1029/2005JC003139
    [17]
    Rosmond T E, Teixeira J, Peng M, et al. 2002. Navy Operational Global Atmospheric Prediction System (NOGAPS): forcing for ocean models. Oceanography, 15(1): 99–108. doi: 10.5670/oceanog.2002.40
    [18]
    Shaw P T, Chao S Y. 1994. Surface circulation in the South China Sea. Deep-Sea Research Part I: Oceanographic Research Papers, 41(11–12): 1663–1683
    [19]
    Shu Yeqiang, Xue Huijie, Wang Dongxiao, et al. 2014. Meridional overturning circulation in the South China Sea envisioned from the high-resolution global reanalysis data GLBa0.08. Journal of Geophysical Research: Oceans, 119(5): 3012–3028. doi: 10.1002/2013JC009583
    [20]
    Song Y T, Chao Yi. 2004. A theoretical study of topographic effects on coastal upwelling and cross-shore exchange. Ocean Modelling, 6(2): 151–176. doi: 10.1016/S1463-5003(02)00064-1
    [21]
    Wang J. 1986. Observation of abyssal flows in the northern South China Sea. Acta Oceanographica Taiwanica, 16: 36–45
    [22]
    Wang Dongxiao, Liu Qinyan, Huang Ruixin, et al. 2006. Interannual variability of the South China Sea throughflow inferred from wind data and an ocean data assimilation product. Geophysical Research Letters, 33(14): L14605. doi: 10.1029/2006GL026316
    [23]
    Wang Guihua, Xie Shangping, Qu Tangdong, et al. 2011. Deep South China Sea circulation. Geophysical Research Letters, 38(5): L05601. doi: 10.1029/2010GL046626
    [24]
    Xiao Jinggen, Xie Qiang, Liu Changjian, et al. 2013. A diagnostic model of the South China Sea bottom circulation in consideration of tidal mixing, eddy-induced mixing and topography. Haiyang Xuebao, 35(5): 1–13
    [25]
    Xie Lingling, Pallàs-Sanz E, Zheng Quanan, et al. 2017. Diagnosis of 3D vertical circulation in the upwelling and frontal zones east of Hainan Island, China. Journal of Physical Oceanography, 47(4): 755–774. doi: 10.1175/JPO-D-16-0192.1
    [26]
    Xie Qiang, Xiao Jinggen, Wang Dongxiao, et al. 2013. Analysis of deep-layer and bottom circulations in the South China Sea based on eight quasi-global ocean model outputs. Chinese Science Bulletin, 58(32): 4000–4011. doi: 10.1007/s11434-013-5791-5
    [27]
    Xie Lingling, Zhang Shuwen, Zhao Hui. 2012. Overview of studies on Qiongdong upwelling. Journal of Tropical Oceanography, 31(4): 35–41
    [28]
    Xu Fanghua, Oey L Y. 2014. State analysis using the Local Ensemble Transform Kalman Filter (LETKF) and the three-layer circulation structure of the Luzon Strait and the South China Sea. Ocean Dynamics, 64(6): 905–923. doi: 10.1007/s10236-014-0720-y
    [29]
    Xu Tengfei, Wei Zexun, Susanto R D, et al. 2021. Observed water exchange between the South China Sea and Java Sea through Karimata Strait. Journal of Geophysical Research: Oceans, 126(2): e2020JC016608. doi: 10.1029/2020JC016608
    [30]
    Yuan Dongliang. 2002. A numerical study of the South China Sea deep circulation and its relation to the Luzon Strait transport. Acta Oceanologica Sinica, 21(2): 187–202
    [31]
    Zhang Zhiwei, Zhao Wei, Tian Jiwei, et al. 2015. Spatial structure and temporal variability of the zonal flow in the Luzon Strait. Journal of Geophysical Research: Oceans, 120(2): 759–776. doi: 10.1002/2014JC010308
    [32]
    Zhao Wei, Zhou Chun, Tian Jiwei, et al. 2014. Deep water circulation in the Luzon Strait. Journal of Geophysical Research: Oceans, 119(2): 790–804. doi: 10.1002/2013JC009587
    [33]
    Zhou Chun, Zhao Wei, Tian Jiwei, et al. 2014. Variability of the deep-water overflow in the Luzon Strait. Journal of Physical Oceanography, 44(11): 2972–2986. doi: 10.1175/JPO-D-14-0113.1
    [34]
    Zhu Yaohua, Fang Guohong, Wei Zexun, et al. 2016. Seasonal variability of the meridional overturning circulation in the South China Sea and its connection with inter-ocean transport based on SODA2.2.4. Journal of Geophysical Research: Oceans, 121(5): 3090–3105. doi: 10.1002/2015JC011443
    [35]
    Zhu Yaohua, Sun Junchuan, Wang Yonggang, et al. 2017a. Effect of potential vorticity flux on the circulation in the South China Sea. Journal of Geophysical Research: Oceans, 122(8): 6454–6469. doi: 10.1002/2016JC012375
    [36]
    Zhu Yaohua, Sun Junchuan, Wei Zexun, et al. 2017b. A fresh look at the deepwater overflow in the Luzon Strait. Acta Oceanologica Sinica, 36(5): 1–8. doi: 10.1007/s13131-017-1057-4
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(2)

    Article Metrics

    Article views (307) PDF downloads(29) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return