Turn off MathJax
Article Contents
Yongjin Huang, Chunhui Tao, Jin Liang, Shili Liao, Yuan Wang, Dong Chen, Weifang Yang. Geological characteristics of the Qiaoyue Seamount and associated ultramafic-hosted seafloor hydrothermal system (~52.1°E, Southwest Indian Ridge)[J]. Acta Oceanologica Sinica. doi: 10.1007/s13131-021-1832-0
Citation: Yongjin Huang, Chunhui Tao, Jin Liang, Shili Liao, Yuan Wang, Dong Chen, Weifang Yang. Geological characteristics of the Qiaoyue Seamount and associated ultramafic-hosted seafloor hydrothermal system (~52.1°E, Southwest Indian Ridge)[J]. Acta Oceanologica Sinica. doi: 10.1007/s13131-021-1832-0

Geological characteristics of the Qiaoyue Seamount and associated ultramafic-hosted seafloor hydrothermal system (~52.1°E, Southwest Indian Ridge)

doi: 10.1007/s13131-021-1832-0
Funds:  The National Key Research and Development Program of China under contract No. 2016YFC0304905; the National Natural Science Foundation of China under contract No. 41806076; the Scientific Research Fund of the Second Institute of Oceanography, MNR under contract No. JG1804; the China Ocean Mineral Resources R&D Association (COMRA) Major Project under contract Nos DY135-S1-1-01, DY135-S1-1-02 and DY135-S1-1-09.
More Information
  • Hydrothermal vent incidence was once thought to be proportional to the spreading rate of the mid-ocean ridges (MORs). However, more and more studies have shown that the ultraslow-spreading ridges (e.g., Southwest Indian Ridge (SWIR)) have a relatively higher incidence of hydrothermal venting fields. The Qiaoyue Seamount (52.1°E) is located at the southern side of segment #25 of the SWIR, to the west of the Gallieni transform fault. The Chinese Dayang cruises conducted eight preliminary deep-towed surveys of hydrothermal activity in the area during 2009 and 2018. Here, through comprehensive analyses of the video and photos obtained by the deep-towed platforms, rock samples, and water column turbidity anomalies, a high-temperature, ultramafic-hosted hydrothermal system is predicted on the northern flank of the Qiaoyue Seamount. We propose that this hydrothermal system is most likely to be driven by gabboric intrusions. Efficient hydrothermal circulation channels appear against a backdrop of high rock permeability related to the detachment fault.
  • loading
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (61) PDF downloads(9) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return