Volume 40 Issue 11
Nov.  2021
Turn off MathJax
Article Contents
Long Lin, Hailun He, Yong Cao, Tao Li, Yilin Liu, Mingfeng Wang. Oceanic vertical mixing of the lower halocline water in the Chukchi Borderland and Mendeleyev Ridge[J]. Acta Oceanologica Sinica, 2021, 40(11): 39-49. doi: 10.1007/s13131-021-1825-z
Citation: Long Lin, Hailun He, Yong Cao, Tao Li, Yilin Liu, Mingfeng Wang. Oceanic vertical mixing of the lower halocline water in the Chukchi Borderland and Mendeleyev Ridge[J]. Acta Oceanologica Sinica, 2021, 40(11): 39-49. doi: 10.1007/s13131-021-1825-z

Oceanic vertical mixing of the lower halocline water in the Chukchi Borderland and Mendeleyev Ridge

doi: 10.1007/s13131-021-1825-z
Funds:  The National Natural Science Foundation of China under contract No. 42006037; the Chinese Polar Environmental Comprehensive Investigation & Assessment Programs, Grant from the Scientific Research Fund of the Second Institute of Oceanography, MNR under contract No. JB904; the National Key R&D Program of China under contract No. 2019YFC1509102.
More Information
  • Corresponding author: E-mail: hehailun@sio.org.cn
  • Received Date: 2021-02-02
  • Accepted Date: 2021-03-09
  • Available Online: 2021-07-02
  • Publish Date: 2021-11-30
  • Oceanic vertical mixing of the lower halocline water (LHW) in the Chukchi Borderland and Mendeleyev Ridge was studied based on in situ hydrographic and turbulent observations. The depth-averaged turbulent dissipation rate of LHW demonstrates a clear topographic dependence, with a mean value of 1.2×10–9 W/kg in the southwest of Canada Basin, 1.5×10–9 W/kg in the Mendeleyev Abyssal Plain, 2.4×10–9 W/kg on the Mendeleyev Ridge, and 2.7×10–9 W/kg on the Chukchi Cap. Correspondingly, the mean depth-averaged vertical heat flux of the LHW is 0.21 W/m2 in the southwest Canada Basin, 0.30 W/m2 in the Mendeleyev Abyssal Plain, 0.39 W/m2 on the Mendeleyev Ridge, and 0.46 W/m2 on the Chukchi Cap. However, in the presence of Pacific Winter Water, the upward heat released from Atlantic Water through the lower halocline can hardly contribute to the surface ocean. Further, the underlying mechanisms of diapycnal mixing in LHW—double diffusion and shear instability—was investigated. The mixing in LHW where double diffusion were observed is always relatively weaker, with corresponding dissipation rate ranging from 1.01×10–9 W/kg to 1.57×10–9 W/kg. The results also show a strong correlation between the depth-average dissipation rate and strain variance in the LHW, which indicates a close physical linkage between the turbulent mixing and internal wave activities. In addition, both surface wind forcing and semidiurnal tides significantly contribute to the turbulent mixing in the LHW.
  • loading
  • [1]
    Aagaard K, Coachman L K, Carmack E. 1981. On the halocline of the Arctic Ocean. Deep-Sea Research Part A: Oceanographic. Research Papers, 28(6): 529–545
    [2]
    Aksenov Y, Ivanov V V, Nurser A J G, et al. 2011. The Arctic circumpolar boundary current. Journal of Geophysical Research: Oceans, 116(C9): C09017
    [3]
    Alford M H. 2003. Improved global maps and 54-year history of wind-work on ocean inertial motions. Geophysical Research Letters, 30(8): 1424
    [4]
    Carmack E, Polyakov I, Padman L, et al. 2015. Toward quantifying the increasing role of oceanic heat in sea ice loss in the new Arctic. Bulletin of the American Meteorological Society, 96(12): 2079–2105. doi: 10.1175/BAMS-D-13-00177.1
    [5]
    Coachman L K, Aagaard K. 1974. Physical oceanography of Arctic and subarctic seas. In: Herman Y, ed. Marine Geology and Oceanography of the Arctic Seas. Berlin, Heidelberg: Springer: 1–72
    [6]
    D'Asaro E A, Morison J H. 1992. Internal waves and mixing in the Arctic Ocean. Deep-Sea Research Part A: Oceanographic. Research Papers, 39(2): S459–S484
    [7]
    Dmitrenko I A, Kirillov S A, Serra N, et al. 2014. Heat loss from the Atlantic water layer in the northern Kara Sea: Causes and consequences. Ocean Science, 10(4): 719–730. doi: 10.5194/os-10-719-2014
    [8]
    Erofeeva S, Egbert G. 2020. Arc5km2018: Arctic Ocean Inverse Tide Model on a 5 kilometer grid, 2018. https:/doi.org/10.18739/A21R6N14K [2021-02-10]
    [9]
    Fer I. 2009. Weak vertical diffusion allows maintenance of cold halocline in the central Arctic. Atmospheric and Oceanic Science Letters, 2(3): 148–152. doi: 10.1080/16742834.2009.11446789
    [10]
    Fer I, Voet G, Seim K S, et al. 2010. Intense mixing of the Faroe Bank Channel overflow. Geophysical Research Letters, 37(2): L02604
    [11]
    Fer I, Bosse A, Ferron B, et al. 2018. The dissipation of kinetic energy in the Lofoten Basin Eddy. Journal of Physical Oceanography, 48(6): 1299–1316. doi: 10.1175/JPO-D-17-0244.1
    [12]
    Flanagan J D, Radko T, Shaw W J, et al. 2014. Dynamic and double-diffusive instabilities in a weak pycnocline: Part II. Direct numerical simulations and flux laws. Journal of Physical Oceanography, 44(8): 1992–2012. doi: 10.1175/JPO-D-13-043.1
    [13]
    Gregg M C, D'Asaro E A, Riley J J, et al. 2018. Mixing efficiency in the ocean. Annual Review of Marine Science, 10: 443–473. doi: 10.1146/annurev-marine-121916-063643
    [14]
    Guthrie J D, Morison J H, Fer I. 2013. Revisiting internal waves and mixing in the Arctic Ocean. Journal of Geophysical Research: Oceans, 118(8): 3966–3977. doi: 10.1002/jgrc.20294
    [15]
    Hibler III W D. 1979. A dynamic thermodynamic sea ice model. Journal of Physical Oceanography, 9(4): 815–846. doi: 10.1175/1520-0485(1979)009<0815:ADTSIM>2.0.CO;2
    [16]
    Itoh M, Shimada K, Kamoshida T, et al. 2012. Interannual variability of Pacific Winter Water inflow through Barrow Canyon from 2000 to 2006. Journal of Oceanography, 68(4): 575–592. doi: 10.1007/s10872-012-0120-1
    [17]
    Jackson J M, Carmack E C, McLaughlin F A, et al. 2010. Identification, characterization, and change of the near-surface temperature maximum in the Canada Basin, 1993–2008. Journal of Geophysical Research: Oceans, 115(C5): C05021
    [18]
    Jones E P, Anderson L G. 1986. On the origin of the chemical properties of the Arctic Ocean halocline. Journal of Geophysical Research: Oceans, 91(C9): 10759–10767. doi: 10.1029/JC091iC09p10759
    [19]
    Jones E P, Anderson L G, Swift J H. 1998. Distribution of Atlantic and Pacific waters in the upper Arctic Ocean: implications for circulation. Geophysical Research Letters, 25(6): 765–768. doi: 10.1029/98GL00464
    [20]
    Kunze E, Firing E, Hummon J M, et al. 2006. Global abyssal mixing inferred from lowered ADCP shear and CTD strain profiles. Journal of Physical Oceanography, 36(8): 1553–1576. doi: 10.1175/JPO2926.1
    [21]
    Lenn Y D, Wiles P J, Torres-Valdes S, et al. 2009. Vertical mixing at intermediate depths in the Arctic boundary current. Geophysical Research Letters, 36(5): L05601
    [22]
    Lincoln B J, Rippeth T P, Lenn Y D, et al. 2016. Wind-driven mixing at intermediate depths in an ice-free Arctic Ocean. Geophysical Research Letters, 43(18): 9749–9756. doi: 10.1002/2016GL070454
    [23]
    Lique C, Guthrie J D, Steele M, et al. 2014. Diffusive vertical heat flux in the Canada Basin of the Arctic Ocean inferred from moored instruments. Journal of Geophysical Research: Oceans, 119(1): 496–508. doi: 10.1002/2013JC009346
    [24]
    Liu Zhiyu, Lozovatsky I. 2012. Upper pycnocline turbulence in the northern South China Sea. Chinese Science Bulletin, 57(18): 2302–2306. doi: 10.1007/s11434-012-5137-8
    [25]
    Lozovatsky I, Liu Zhiyu, Fernando H J S, et al. 2013. The TKE dissipation rate in the northern South China Sea. Ocean Dynamics, 63(11–12): 1189–1201. doi: 10.1007/s10236-013-0656-7
    [26]
    Meyer A, Fer I, Sundfjord A, et al. 2017. Mixing rates and vertical heat fluxes north of Svalbard from Arctic winter to spring. Journal of Geophysical Research: Oceans, 122(6): 4569–4586. doi: 10.1002/2016JC012441
    [27]
    Munk W, Wunsch C. 1998. Abyssal recipes II: energetics of tidal and wind mixing. Deep-Sea Research Part I: Oceanographic Research Papers, 45(12): 1977–2010. doi: 10.1016/S0967-0637(98)00070-3
    [28]
    Nagasawa M, Niwa Y, Hibiya T. 2000. Spatial and temporal distribution of the wind-induced internal wave energy available for deep water mixing in the North Pacific. Journal of Geophysical Research: Oceans, 105(C6): 13933–13943. doi: 10.1029/2000JC900019
    [29]
    Nasmyth P W. 1970. Oceanic turbulence [dissertation]. Vancouver: University of British Columbia
    [30]
    Osborn T R. 1980. Estimates of the local rate of vertical diffusion from dissipation measurements. Journal of Physical Oceanography, 10(1): 83–89. doi: 10.1175/1520-0485(1980)010<0083:EOTLRO>2.0.CO;2
    [31]
    Padman L, Dillon T M. 1991. Turbulent mixing near the Yermak Plateau during the coordinated Eastern Arctic Experiment. Journal of Geophysical Research: Oceans, 96(C3): 4769–4782. doi: 10.1029/90JC02260
    [32]
    Perovich D K, Light B, Eicken H, et al. 2007. Increasing solar heating of the Arctic Ocean and adjacent seas, 1979–2005: attribution and role in the ice-albedo feedback. Geophysical Research Letters, 34(19): L19505. doi: 10.1029/2007GL031480
    [33]
    Polzin K L, Toole J M, Schmitt R W. 1995. Finescale parameterizations of turbulent dissipation. Journal of Physical Oceanography, 25(3): 306–328. doi: 10.1175/1520-0485(1995)025<0306:FPOTD>2.0.CO;2
    [34]
    Qiu Bo, Chen Shuiming, Carter G S. 2012. Time-varying parametric subharmonic instability from repeat CTD surveys in the northwestern Pacific Ocean. Journal of Geophysical Research: Oceans, 117(C9): C09012
    [35]
    Qiu Chunhua, Huo Dan, Liu Changjian, et al. 2019. Upper vertical structures and mixed layer depth in the shelf of the northern South China Sea. Continental Shelf Research, 174: 26–34. doi: 10.1016/j.csr.2019.01.004
    [36]
    Rainville L, Winsor P. 2008. Mixing across the Arctic Ocean: microstructure observations during the Beringia 2005 expedition. Geophysical Research Letters, 35(8): L08606
    [37]
    Rippeth T P, Lincoln B J, Lenn Y D, et al. 2015. Tide-mediated warming of Arctic halocline by Atlantic heat fluxes over rough topography. Nature Geoscience, 8(3): 191–194. doi: 10.1038/ngeo2350
    [38]
    Rudels B, Anderson L G, Jones E P. 1996. Formation and evolution of the surface mixed layer and halocline of the Arctic Ocean. Journal of Geophysical Research: Oceans, 101(C4): 8807–8821. doi: 10.1029/96JC00143
    [39]
    Rudels B, Jones E P, Schauer U, et al. 2004. Atlantic sources of the Arctic Ocean surface and halocline waters. Polar Research, 23(2): 181–208. doi: 10.1111/j.1751-8369.2004.tb00007.x
    [40]
    Shaw W J, Stanton T P. 2014a. Vertical diffusivity of the Western Arctic Ocean halocline. Journal of Geophysical Research: Oceans, 119(8): 5017–5038. doi: 10.1002/2013JC009598
    [41]
    Shaw W J, Stanton T P. 2014b. Dynamic and double-diffusive instabilities in a weak pycnocline: Part I. observations of heat flux and diffusivity in the vicinity of Maud Rise, Weddell Sea. Journal of Physical Oceanography, 44(8): 1973–1991. doi: 10.1175/JPO-D-13-042.1
    [42]
    Shimada K, Carmack E C, Hatakeyama K, et al. 2001. Varieties of shallow temperature maximum waters in the western Canadian Basin of the Arctic Ocean. Geophysical Research Letters, 28(18): 3441–3444. doi: 10.1029/2001GL013168
    [43]
    Simmons H L, Hallberg R W, Arbic B K. 2004. Internal wave generation in a global baroclinic tide model. Deep Sea Research Part II: Topical Studies in Oceanography, 51(25/26): 3043–3068. doi: 10.1016/j.dsr2.2004.09.015
    [44]
    Sirevaag A, Fer I. 2012. Vertical heat transfer in the Arctic Ocean: the role of double-diffusive mixing. Journal of Geophysical Research: Oceans, 117(C7): C07010
    [45]
    Spreen G, Kaleschke L, Heygster G. 2008. Sea ice remote sensing using AMSR-E 89-GHz channels. Journal of Geophysical Research: Oceans, 113(C2): C02S03
    [46]
    Steele M, Morison J H. 1993. Hydrography and vertical fluxes of heat and salt northeast of Svalbard in autumn. Journal of Geophysical Research: Oceans, 98(C6): 10013–10024. doi: 10.1029/93JC00937
    [47]
    Steele M, Morison J, Ermold W, et al. 2004. Circulation of summer Pacific halocline water in the Arctic Ocean. Journal of Geophysical Research: Oceans, 109(C2): C02027
    [48]
    Thorndike A S, Colony R. 1982. Sea ice motion in response to geostrophic winds. Journal of Geophysical Research: Oceans, 87(C8): 5845–5852. doi: 10.1029/JC087iC08p05845
    [49]
    Timmermans M L, Proshutinsky A, Golubeva E, et al. 2014. Mechanisms of Pacific summer water variability in the Arctic's Central Canada Basin. Journal of Geophysical Research: Oceans, 119(11): 7523–7548. doi: 10.1002/2014JC010273
    [50]
    Timmermans M L, Toole J, Krishfield R, et al. 2008. Ice-tethered profiler observations of the double-diffusive staircase in the Canada Basin thermocline. Journal of Geophysical Research: Oceans, 113(C1): C00A02
    [51]
    Toole J M, Timmermans M L, Perovich D K, et al. 2010. Influences of the ocean surface mixed layer and thermohaline stratification on Arctic Sea ice in the central Canada Basin. Journal of Geophysical Research: Oceans, 115(C10): C10018
    [52]
    Turner J S. 2010. The melting of ice in the Arctic Ocean: the influence of double-diffusive transport of heat from below. Journal of Physical Oceanography, 40(1): 249–256. doi: 10.1175/2009JPO4279.1
    [53]
    Woodgate R A, Aagaard K, Swift J H, et al. 2007. Atlantic water circulation over the Mendeleev Ridge and Chukchi Borderland from thermohaline intrusions and water mass properties. Journal of Geophysical Research: Oceans, 112(C2): C02005
    [54]
    Yang Jiayan. 2009. Seasonal and interannual variability of downwelling in the Beaufort Sea. Journal of Geophysical Research: Oceans, 114(C1): C00A14
    [55]
    Yang Qingxuan, Zhao Wei, Liang Xinfeng, et al. 2017. Elevated mixing in the periphery of mesoscale eddies in the South China Sea. Journal of Physical Oceanography, 47(4): 895–907. doi: 10.1175/JPO-D-16-0256.1
    [56]
    Zhang Jinlun, Steele M. 2007. Effect of vertical mixing on the Atlantic Water layer circulation in the Arctic Ocean. Journal of Geophysical Research: Oceans, 112(C4): C04S04
    [57]
    Zhao Jinping, Wang Weibo, Kang S H, et al. 2015. Optical properties in waters around the Mendeleev Ridge related to the physical features of water masses. Deep-Sea Research Part II: Topical Studies in Oceanography, 120: 43–51. doi: 10.1016/j.dsr2.2015.04.011
    [58]
    Zhong Wenli, Zhao Jinping. 2014. Deepening of the Atlantic Water core in the Canada Basin in 2003–11. Journal of Physical Oceanography, 44(9): 2353–2369. doi: 10.1175/JPO-D-13-084.1
    [59]
    Zhong Wenli, Guo Guijun, Zhao Jinping, et al. 2018. Turbulent mixing above the Atlantic Water around the Chukchi Borderland in 2014. Acta Oceanologica Sinica, 37(3): 31–41. doi: 10.1007/s13131-018-1198-0
    [60]
    Zhong Wenli, Steele M, Zhang Jinlun, et al. 2019. Circulation of Pacific winter water in the Western Arctic Ocean. Journal of Geophysical Research: Oceans, 124(2): 863–881. doi: 10.1029/2018JC014604
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Article Metrics

    Article views (1047) PDF downloads(29) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return