Turn off MathJax
Article Contents
Qiu Zhong, Yangfan Deng, Zhigang Peng, Lingyuan Meng. Possible triggering relationship of Six Mw > 6 earthquakes in 2018–2019 at Philippine archipelago[J]. Acta Oceanologica Sinica. doi: 10.1007/s13131-021-1813-3
Citation: Qiu Zhong, Yangfan Deng, Zhigang Peng, Lingyuan Meng. Possible triggering relationship of Six Mw > 6 earthquakes in 2018–2019 at Philippine archipelago[J]. Acta Oceanologica Sinica. doi: 10.1007/s13131-021-1813-3

Possible triggering relationship of Six Mw > 6 earthquakes in 2018–2019 at Philippine archipelago

doi: 10.1007/s13131-021-1813-3
Funds:  The National Natural Science Foundation of China under contract Nos 41704049, 41890813, 91628301 and 41974068; the Chinese Academy of Sciences under contract Nos QYZDY-SSW-DQC005 and 133244KYSB20180029; the foundation of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) under contract No. GML2019ZD0205; the foundation of Youth Innovation Promotion Association, Chinese Academy of Sciences under contract No. YIPA2018385; the United States National Science Foundation under contract No. EAR-1736197; the Science Foundation for Earthquake Resilience of China Earthquake Administration under contract No. XH20072.
More Information
  • Corresponding author: qiuzhong@scsio.ac.cn
  • Received Date: 2020-12-01
  • Accepted Date: 2020-12-31
  • Available Online: 2021-06-11
  • Philippine archipelago (PA) has strong background seismicity, but there is no systematic study of earthquake triggering in this region. There are six earthquakes (Mw > 6) occurred between 2018/12/29 and 2019/09/29 in PA, which provides an excellent opportunity to investigate the triggering relationship among these events. We calculate the static Coulomb stress changes of the first five events, and find that the local seismicity after the 2018/12/29 Mw 7.0 earthquake is mostly associated with positive Coulomb stress changes, including the 2019/05/31 Mw 6.1 event, suggesting a possible triggering relationship. However, we cannot rule out the dynamic triggering mechanism, due to increased microseismicity in both positive and negative stress change regions, and an incomplete local catalog, especially right after the first Mw 7.0 mainshock. The dynamic stresses from these Mw > 6 events are large enough (from 5 to 3532 KPa) to trigger subsequent events, but a lack of seismicity and waveform evidence does not support delayed dynamic triggering among these events, even the shortest time interval is less than 24 hours. In the past 45 years, the released seismic energy shows certain peaks every 5–10 years. However, earthquakes with Mw > 6.0 were relatively infrequent between 2004 and 2018 at PA. Hence, it is possible that several regions are relatively late in their earthquake cycles, which would enhance their susceptibility of being triggered by earthquakes at nearby and regional distances.
  • loading
  • [1]
    Aiken C, Peng Zhigang. 2014. Dynamic triggering of microearthquakes in three geothermal/volcanic regions of California. Journal of Geophysical Research: Solid Earth, 119(9): 6992–7009. doi: 10.1002/2014JB011218
    Aki K, Richard P G. 2002. Quantitative Seismology. 2nd ed. Sausalito, CA: University Science Books.
    Anderson J G, Brune J N, Louie J N, et al. 1994. Seismicity in the western Great Basin apparently triggered by the Landers, California, earthquake, 28 June 1992. Bulletin of the Seismological Society of America, 84(3): 863–891
    Aurelio M A. 2000. Shear partitioning in the Philippines: Constraints from Philippine fault and global positioning system data. Island Arc, 9(4): 584–597. doi: 10.1046/j.1440-1738.2000.00304.x
    Aurelio M A, Dianala J D B, Taguibao K J L, et al. 2017. Seismotectonics of the 6 February 2012 MW 6.7 Negros Earthquake, central Philippines. Journal of Asian Earth Sciences, 142: 93–108. doi: 10.1016/j.jseaes.2016.12.018
    Bach C, Hainzl S. 2012. Improving empirical aftershock modeling based on additional source information. Journal of Geophysical Research: Solid Earth, 117(B4): B04312. doi: 10.1029/2011JB008901
    Bansal A R, Yao Dongdong, Peng Zhigang, et al. 2016. Isolated regions of remote triggering in South/Southeast Asia following the 2012 MW 8.6 Indian Ocean earthquake. Geophysical Research Letters, 43(20): 10654–10662. doi: 10.1002/2016GL069955
    Belardinelli M E, Bizzarri A, Cocco M. 2003. Earthquake triggering by static and dynamic stress changes. Journal of Geophysical Research: Solid Earth, 108(B3): 2135
    Brodsky E E, Prejean S G. 2005. New constraints on mechanisms of remotely triggered seismicity at Long Valley Caldera. Journal of Geophysical Research: Solid Earth, 110(B4): B04302. doi: 10.1029/2004JB003211
    Castro A F P, Dougherty S L, Harrington R M, et al. 2019. Delayed dynamic triggering of disposal-induced earthquakes observed by a dense array in Northern Oklahoma. Journal of Geophysical Research: Solid Earth, 124(4): 3766–3781. doi: 10.1029/2018JB017150
    Chen Pofei, Olavere E A, Wang Chenwei, et al. 2015. Seismotectonics of Mindoro, Philippines. Tectonophysics, 640–641: 70–79
    Ekström G, Nettles M, Dziewoński A M. 2012. The global CMT project 2004–2010: Centroid-moment tensors for 13, 017 earthquakes. Physics of the Earth and Planetary Interiors, 200–201: 1–9. doi: 10.1016/j.pepi.2012.04.002
    Enescu B, Mori J, Miyazawa M. 2007. Quantifying early aftershock activity of the 2004 mid-Niigata Prefecture earthquake (MW6.6). Journal of Geophysical Research: Solid Earth, 112(B4): B04310
    Enescu B, Shimojo K, Opris A, et al. 2016. Remote triggering of seismicity at Japanese volcanoes following the 2016 M7.3 Kumamoto earthquake. Earth, Planets and Space, 68: 165. doi: 10.1186/s40623-016-0539-5
    Fan Jianke, Zhao Dapeng. 2019. P-wave anisotropic tomography of the central and southern Philippines. Physics of the Earth and Planetary Interiors, 286: 154–164. doi: 10.1016/j.pepi.2018.12.001
    Freed A M. 2005. Earthquake triggering by static, dynamic, and postseismic stress transfer. Annual Review of Earth and Planetary Sciences, 33: 335–367. doi: 10.1146/annurev.earth.33.092203.122505
    Ghosh A, Vidale J E, Peng Zhigang, et al. 2009. Complex nonvolcanic tremor near Parkfield, California, triggered by the great 2004 Sumatra earthquake. Journal of Geophysical Research: Solid Earth, 114(12
    Gomberg J, Beeler N M, Blanpied M L, et al. 1998. Earthquake triggering by transient and static deformations. Journal of Geophysical Research: Solid Earth, 103(B10): 24411–24426. doi: 10.1029/98JB01125
    Guilhem A, Peng Zhigang, Nadeau R M. 2010. High-frequency identification of non-volcanic tremor triggered by regional earthquakes. Geophysical Research Letters, 37(16): L16309. doi: 10.1029/2010GL044660
    Hayes G P, Moore G L, Portner D E, et al. 2018. Slab2, a comprehensive subduction zone geometry model. Science, 362(6410): 58–61. doi: 10.1126/science.aat4723
    Hill D P, Prejean S G. 2015. 4.11 - Dynamic triggering. Treatise on Geophysics, 4: 273–304
    Johnson C W, Bürgmann R. 2016. Delayed dynamic triggering: Local seismicity leading up to three remote M≥6 aftershocks of the 11 April 2012 M8.6 Indian Ocean earthquake. Journal of Geophysical Research: Solid Earth, 121(1): 134–151. doi: 10.1002/2015JB012243
    Kilb D. 2003. A strong correlation between induced peak dynamic Coulomb stress change from the 1992 M7.3 Landers, California, earthquake and the hypocenter of the 1999 M7.1 Hector Mine, California, earthquake. Journal of Geophysical Research: Solid Earth, 108(B1): ESE 3-1–ESE 3-7. doi: 10.1029/2001JB000678
    King G C P, Deves M H. 2015. Fault interaction, earthquake stress changes, and the evolution of seismicity. Treatise on Geophysics, 4: 225–255
    King G C P, Stein R S, Lin Jian. 1994. Static stress changes and the triggering of earthquakes. Bulletin of the Seismological Society of America, 84(3): 935–953
    Lei Xinglin, Xie Chaodi, Fu Bihong. 2011. Remotely triggered seismicity in Yunnan, southwestern China, following the 2004 Mw 9.3 Sumatra earthquake. Journal of Geophysical Research: Solid Earth, 116(B8): B08303. doi: 10.1029/2011JB008245
    Li Lu, Wang Baoshan, Peng Zhigang, et al. 2019. Dynamic triggering of microseismicity in Southwest China following the 2004 Sumatra and 2012 Indian Ocean Earthquakes. Journal of Asian Earth Sciences, 176: 129–140. doi: 10.1016/j.jseaes.2019.02.010
    Lin Jian, Stein R S. 2004. Stress triggering in thrust and subduction earthquakes and stress interaction between the southern San Andreas and nearby thrust and strike-slip faults. Journal of Geophysical Research: Solid Earth, 109(B2): B02303
    Lin Jingyi, Wu Wennan, Lo C L. 2015. Megathrust earthquake potential of the Manila subduction system: revealed by the seismic moment tensor element Mrr. Terrestrial, Atmospheric and Oceanic Sciences, 26(6): 619–630. doi: 10.3319/TAO.2013.04.29.01(TC)
    Meng Xiaofeng, Peng Zhigang. 2014. Seismicity rate changes in the Salton Sea Geothermal Field and the San Jacinto Fault Zone after the 2010 Mw 7.2 El Mayor-Cucapah earthquake. Geophysical Journal International, 197(3): 1750–1762. doi: 10.1093/gji/ggu085
    Meng Xiaofeng, Peng Zhigang, Hardebeck J L. 2013. Seismicity around Parkfield correlates with static shear stress changes following the 2003 MW6.5 San Simeon earthquake. Journal of Geophysical Research: Solid Earth, 118(7): 3576–3591. doi: 10.1002/jgrb.50271
    Müller R D, Sdrolias M, Gaina C, et al. 2008. Age, spreading rates, and spreading asymmetry of the world's ocean crust. Geochemistry, Geophysics, Geosystems, 9(4): Q04006
    Ogata Y. 1988. Statistical models for earthquake occurrences and residual analysis for point processes. Journal of the American Statistical Association, 83(401): 9–27. doi: 10.1080/01621459.1988.10478560
    Orlecka-Sikora B. 2010. The role of static stress transfer in mining induced seismic events occurrence, a case study of the Rudna mine in the Legnica-Glogow Copper District in Poland. Geophysical Journal International, 182(2): 1087–1095. doi: 10.1111/j.1365-246X.2010.04672.x
    Pankow K L, Kilb D. 2020. Going beyond rate changes as the sole indicator for dynamic triggering of earthquakes. Scientific Reports, 10: 4120. doi: 10.1038/s41598-020-60988-2
    Papadopoulos G A. 2002. The Athens, Greece, earthquake (MS 5.9) of 7 September 1999: an event triggered by the Izmit, Turkey, 17 August 1999 earthquake?. Bulletin of the Seismological Society of America, 92(1): 312–321. doi: 10.1785/0120000805
    Parsons T, Velasco A. 2011. Absence of remotely triggered large earthquakes beyond the mainshock region. Nature Geoscience, 4: 312–316. doi: 10.1038/ngeo1110
    Peng Zhigang, Fry B, Chao K, et al. 2018. Remote triggering of microearthquakes and tremor in New Zealand following the 2016 MW 7.8 Kaikōura earthquake. Bulletin of the Seismological Society of America, 108(3B): 1784–1793. doi: 10.1785/0120170327
    Peng Zhigang, Gomberg J. 2010. An integrated perspective of the continuum between earthquakes and slow-slip phenomena. Nature Geoscience, 3: 599–607. doi: 10.1038/ngeo940
    Peng Zhigang, Shelly D R, Ellsworth W L. 2015. Delayed dynamic triggering of deep tremor along the Parkfield-Cholame section of the San Andreas Fault following the 2014 M6.0 South Napa earthquake. Geophysical Research Letters, 42(19): 7916–7922. doi: 10.1002/2015GL065277
    Peng Zhigang, Vidale J E, Ishii M, et al. 2007. Seismicity rate immediately before and after main shock rupture from high-frequency waveforms in Japan. Journal of Geophysical Research: Solid Earth, 112: B03306. doi: 10.1029/2006JB004386
    Peng Zhigang, Zhao Peng. 2009. Migration of early aftershocks following the 2004 Parkfield earthquake. Nature Geoscience, 2: 877–881. doi: 10.1038/ngeo697
    Pollitz F, Stein R, Sevilgen V, et al. 2012. The 11 April 2012 east Indian Ocean earthquake triggered large aftershocks worldwide. Nature, 490: 250–253. doi: 10.1038/nature11ence504
    Qiu Qiang, Li Linlin, Hsu Y J, et al. 2019. Revised earthquake sources along Manila trench for tsunami hazard assessment in the South China Sea. Natural Hazards and Earth System Sciences, 19(7): 1565–1583. doi: 10.5194/nhess-19-1565-2019
    Reverso T, Steacy S, Marsan D. 2018. A hybrid ETAS-Coulomb approach to forecast spatiotemporal aftershock rates. Journal of Geophysical Research: Solid Earth, 123(11): 9750–9763. doi: 10.1029/2017JB015108
    Richter C F. 1958. Elementary Seismology. San Francisco: W. H. Freeman and Co. Bailey Bros. & Swinfen Ltd.
    Ringenbach J C, Pinet N, Stéphan J F, et al. 1993. Structural variety and tectonic evolution of strike-slip basins related to the Philippine Fault System, northern Luzon, Philippines. Tectonics, 12(1): 187–203. doi: 10.1029/92TC01968
    Ross Z E, Trugman D T, Hauksson E, et al. 2019. Searching for hidden earthquakes in Southern California. Science, 364(6442): 767–771. doi: 10.1126/science.aaw6888
    Sepúlveda I, Liu P L F, Grigoriu M. 2019. Probabilistic tsunami hazard assessment in South China Sea with consideration of uncertain earthquake characteristics. Journal of Geophysical Research: Solid Earth, 124(1): 658–688. doi: 10.1029/2018JB016620
    Shearer P M. 1999. Introduction to Seismology. Cambridge: Cambridge University Press
    Shelly D R, Johnson K M. 2011. Tremor reveals stress shadowing, deep postseismic creep, and depth-dependent slip recurrence on the lower-crustal San Andreas fault near Parkfield. Geophysical Research Letters, 38(13
    Smoczyk G M, Hayes G P, Hamburger M W, et al. 2013. Seismicity of the earth 1900–2012 Philippine Sea plate and vicinity. USGS Open-File Report: 2010-1083-M. Reston, VA, USA: U.S. Geological Survey
    Steacy S, Gerstenberger M, Williams C, et al. 2014. A new hybrid Coulomb/statistical model for forecasting aftershock rates. Geophysical Journal International, 196(2): 918–923. doi: 10.1093/gji/ggt404
    Toda S, Stein R S, Beroza G C, et al. 2012. Aftershocks halted by static stress shadows. Nature Geoscience, 5(6): 410–413. doi: 10.1038/ngeo1465
    Toda S, Stein R S, Richards-Dinger K, et al. 2005. Forecasting the evolution of seismicity in southern California: Animations built on earthquake stress transfer. Journal of Geophysical Research: Solid Earth, 110(B5): B05S16. doi: 10.1029/2004JB003415
    Toda S, Stein R S, Sevilgen V, et al. 2011. Coulomb 3.3 Graphic-rich deformation and stress-change software for earthquake, tectonic, and volcano research and teaching-user guide. Open-File Report 2011-1060. Reston, VA, USA: U. S. Geological Survey, doi: 10.3133/ofr20111060
    Van Der Elst N J, Brodsky E E. 2010. Connecting near-field and far-field earthquake triggering to dynamic strain. Journal of Geophysical Research: Solid Earth, 115(B7): B07311. doi: 10.1029/2009JB006681
    Wallace L M, Kaneko Y, Hreinsdóttir S, et al. 2017. Large-scale dynamic triggering of shallow slow slip enhanced by overlying sedimentary wedge. Nature Geoscience, 10(10): 765–770. doi: 10.1038/ngeo3021
    Walter J I, Meng Xiaofeng, Peng Zhigang, et al. 2015. Far-field triggering of foreshocks near the nucleation zone of the 5 September 2012 (MW 7.6) Nicoya Peninsula, Costa Rica earthquake. Earth and Planetary Science Letters, 431: 75–86. doi: 10.1016/j.jpgl.2015.09.017
    Wang Wejun, Meng Xiaofeng, Peng Zhigang, et al. 2015. Increasing background seismicity and dynamic triggering behaviors with nearby mining activities around Fangshan Pluton in Beijing, China. Journal of Geophysical Research: Solid Earth, 120(8): 5624–5638. doi: 10.1002/2015JB012235
    Wessel P, Smith W H F. 1998. New, improved version of generic mapping tools released. Eos, Transactions American Geophysical Union, 79(47): 579. doi: 10.1029/98EO00426
    West M, Sánchez J J, McNutt S R. 2005. Periodically triggered seismicity at mount Wrangell, Alaska, after the Sumatra earthquake. Science, 308(5725): 1144–1146. doi: 10.1126/science.1112462
    Wiemer S, Wyss M. 2000. Minimum magnitude of completeness in earthquake catalogs: examples from Alaska, the Western United States, and Japan. Bulletin of the Seismological Society of America, 90(4): 859–869. doi: 10.1785/0119990114
    Woessner J, Wiemer S. 2005. Assessing the quality of earthquake catalogues: estimating the magnitude of completeness and its uncertainty. Bulletin of the Seismological Society of America, 95(2): 684–698. doi: 10.1785/0120040007
    Wu Wennan, Lo C L, Lin Jingyi. 2017. Spatial variations of the crustal stress field in the Philippine region from inversion of earthquake focal mechanisms and their tectonic implications. Journal of Asian Earth Sciences, 142: 109–118. doi: 10.1016/j.jseaes.2017.01.036
    Wu Jing, Peng Zhigang, Wang Weijun, et al. 2012. Comparisons of dynamic triggering near Beijing, China following recent large earthquakes in Sumatra. Geophysical Research Letters, 39(21): L21310
    Yang Yinghui, Tsai M C, Hu J C, et al. 2018. Coseismic slip deficit of the 2017 MW 6.5 Ormoc earthquake that occurred along a creeping segment and geothermal field of the Philippine Fault. Geophysical Research Letters, 45(6): 2659–2668. doi: 10.1002/2017GL076417
    Yao Dongdong, Peng Zhigang, Meng Xiaofeng. 2015. Systematical search for remotely triggered earthquakes in Tibetan Plateau following the 2004 M 9.0 Sumatra and 2005 M 8.6 Nias earthquakes. Geophysical Journal International, 201(2): 543–551. doi: 10.1093/gji/ggv037
    Yu S B, Hsu Y J, Bacolcol T, et al. 2013. Present-day crustal deformation along the Philippine Fault in Luzon, Philippines. Journal of Asian Earth Sciences, 65: 64–74. doi: 10.1016/j.jseaes.2010.12.007
    Zhuang Jiacang, Ogata Y, Vere-Jones D. 2002. Stochastic declustering of space-time earthquake occurrences. Journal of the American Statistical Association, 97(458): 369–380. doi: 10.1198/016214502760046925
    Zhuang Jiacang, Ogata Y, Vere-Jones D. 2004. Analyzing earthquake clustering features by using stochastic reconstruction. Journal of Geophysical Research: Solid Earth, 109(B5): B05301
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(4)

    Article Metrics

    Article views (39) PDF downloads(6) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint