Turn off MathJax
Article Contents
Tao Song, Ningsheng Han, Yuhang Zhu, Zhongwei Li, Yineng Li, Shaotian Li, Shiqiu Peng. Application of Deep learning technique to the sea surface height prediction in the South China Sea[J]. Acta Oceanologica Sinica. doi: 10.1007/s13131-021-1735-0
Citation: Tao Song, Ningsheng Han, Yuhang Zhu, Zhongwei Li, Yineng Li, Shaotian Li, Shiqiu Peng. Application of Deep learning technique to the sea surface height prediction in the South China Sea[J]. Acta Oceanologica Sinica. doi: 10.1007/s13131-021-1735-0

Application of Deep learning technique to the sea surface height prediction in the South China Sea

doi: 10.1007/s13131-021-1735-0
Funds:  The National Key Research and Development Program under contract Nos 2018YFC1406204 and 2018YFC1406201; the Guangdong Special Support Program under contract No. 2019BT2H594; the Tai Shan Scholar Foundation under contract No. tsqn201812029; the National Natural Science Foundation of China under contract Nos U1811464, 61572522, 61572523, 61672033, 61672248, 61873280, 41676016 and 41776028; the Natural Science Foundation of Shandong Province under contract Nos ZR2019MF012 and 2019GGX101067; the Fundamental Research Funds of Central Universities under contract Nos 18CX02152A and 19CX05003A-6; the Shandong Province Innovation Researching Group under contract No. 2019KJN014; the Key Special Project for Introduced Talents Team of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) under contract No. GML2019ZD0303.
More Information
  • Corresponding author: Email: speng@scsio.ac.cn
  • Received Date: 2020-08-26
  • Accepted Date: 2020-09-16
  • Available Online: 2021-05-12
  • A deep-learning-based method, called ConvLSTMP3, is developed to predict the sea surface heights (SSHs). ConvLSTMP3 is data-driven by treating the SSH prediction problem as the one of extracting the spatial-temporal features of SSHs, in which the spatial features are “learned” by convolutional operations while the temporal features are tracked by long short term memory (LSTM). Trained by a reanalysis dataset of the South China Sea, ConvLSTMP3 is applied to the SSH prediction in a region of the SCS east off Vietnam coast featured with eddied and offshore currents in summer. Experimental results show that ConvLSTMP3 achieves a good prediction skill with a mean RMSE of 0.057 m and accuracy of 93.4% averaged over a 15-d prediction period. In particular, ConvLSTMP3 shows a better performance in predicting the temporal evolution of mesoscale eddies in the region than a full-dynamics ocean model. Given the much less computation in the prediction required by ConvLSTMP3, our study suggests that the deep learning technique is very useful and effective in the SSH prediction, and could be an alternative way in the operational prediction for ocean environments in the future.
  • loading
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (77) PDF downloads(7) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return